期刊文献+
共找到1,140篇文章
< 1 2 57 >
每页显示 20 50 100
Porous framework materials for energy&environment relevant applications:A systematic review 被引量:2
1
作者 Yutao Liu Liyu Chen +16 位作者 Lifeng Yang Tianhao Lan Hui Wang Chenghong Hu Xue Han Qixing Liu Jianfa Chen Zeming Feng Xili Cui Qianrong Fang Hailong Wang Libo Li Yingwei Li Huabin Xing Sihai Yang Dan Zhao Jinping Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期217-310,共94页
Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and eff... Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective. 展开更多
关键词 Porous framework materials CATALYSIS SEPARATION Gas storage Carbon neutrality
下载PDF
Outstanding Lithium Storage Performance of a Copper-Coordinated Metal-Covalent Organic Framework as Anode Material for Lithium-Ion Batteries
2
作者 Derong Luo Huizi Zhao +5 位作者 Feng Liu Hai Xu Xiaoyu Dong Bing Ding Hui Dou Xiaogang Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期29-36,共8页
Metal-covalent organic frameworks(MCOF)as a bridge between covalent organic framework(COF)and metal organic framework(MOF)possess the characteristics of open metal sites,structure stability,crystallinity,tunability as... Metal-covalent organic frameworks(MCOF)as a bridge between covalent organic framework(COF)and metal organic framework(MOF)possess the characteristics of open metal sites,structure stability,crystallinity,tunability as well as porosity,but still in its infancy.In this work,a covalent organic framework DT-COF with a keto-enamine structure synthesized from the condensation of 3,3'-dihydroxybiphenyl diamine(DHBD)and triformylphloroglucinol(TFP)was coordinated with Cu^(2+)by a simple post-modification method to a obtain a copper-coordinated metal-covalent organic framework of Cu-DT COF.The isomerization from a keto-enamine structure of DT-COF to a enol-imine structure of Cu-DT COF is induced due to the coordination interaction of Cu^(2+).The structure change of Cu-DT COF induces the change of the electron distribution in the Cu-DT COF,which greatly promotes the activation and deep Li-storage behavior of the COF skeleton.As anode material for lithium-ion batteries(LIBs),Cu-DT COF exhibits greatly improved electrochemical performance,retaining the specific capacities of 760 mAh g^(-1)after 200 cycles and 505 mAh g^(-1)after 500 cycles at a current density of 0.5 A g^(-1).The preliminary lithium storage mechanism studies indicate that Cu^(2+)is also involved in the lithium storage process.A possible mechanism for Cu-DT COF was proposed on the basis of FT-IR,XPS,EPR characterization and electrochemical analysis.This work enlightens a novel strategy to improve the energy storage performance of COF and promotes the application of COF and MCOF in LIBs. 展开更多
关键词 anode material copper-coordination lithium-ion batteries metal-covalent organic frameworks
下载PDF
An imine-linked covalent organic framework as the host material for sulfur loading in lithium–sulfur batteries 被引量:7
3
作者 Jianyi Wang Liping Si +6 位作者 Qin Wei Xujia Hong Ligui Lin Xin Li Jingyi Chen Peibiao Wen Yuepeng Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期54-60,共7页
Lithium–sulfur(Li–S) batteries have high theoretical specific capacity, providing new opportunities for the next generation of secondary battery. Covalent organic framework(COF) as a new porous crystalline material ... Lithium–sulfur(Li–S) batteries have high theoretical specific capacity, providing new opportunities for the next generation of secondary battery. Covalent organic framework(COF) as a new porous crystalline material has been used as the host material in Li–S battery to improve the cell's cycling stability. In this paper, an imine-linked TAPB-PDA-COF was applied as the host material for sulfur loading(60%) in Li–S battery. The TAPB-PDA-COF has a beehive-like morphology with high thermal stability(up to 500 ℃).In the electrochemical experiment, the performance of the composite cathode with acetylene black(AB) and super-P(S-P) as the conductive additives was studied individually. The initial discharge capacity under 0.2 A/g current density was 991 mAh/g and 1357 mAh/g for TAPB-PDA-COF/S@A-B and TAPB-PDACOF/S@S-P, respectively. The better result of S-P based cathode than A-B could be due to the better conductivity of the S-P, as proved by the EIS results. When further increased the current density to 2 A/g,the S-P based composite cathode can still deliver a comparable initial discharge capacity of 630 and 274 mAh/g capacity remained after 940 cycles. This results will inspire researchers develop more suitable conductive additives together with the host materials for high performance Li–S battery. 展开更多
关键词 Lithium-sulfur BATTERIES COVALENT organic framework HOST material Conductive additives
下载PDF
A Review on Metal-Organic Framework-Derived Porous Carbon-Based Novel Microwave Absorption Materials 被引量:26
4
作者 Zhiwei Zhang Zhihao Cai +5 位作者 Ziyuan Wang Yaling Peng Lun Xia Suping Ma Zhanzhao Yin Yi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期1-29,共29页
The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar st... The development of microwave absorption materials(MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human’s health.And MAMs are also used in radar stealth for protecting the weapons from being detected.Many nanomaterials were studied as MAMs,but not all of them have the satisfactory performance.Recently,metal-organic frameworks(MOFs) have attracted tremendous attention owing to their tunable chemical structures,diverse properties,large specific surface area and uniform pore distribution.MOF can transform to porous carbon(PC) which is decorated with metal species at appropriate pyrolysis temperature.However,the loss mechanism of pure MOF-derived PC is often relatively simple.In order to further improve the MA performance,the MOFs coupled with other loss materials are a widely studied method.In this review,we summarize the theories of MA,the progress of different MOF-derived PC-based MAMs,tunable chemical structures incorporated with dielectric loss or magnetic loss materials.The different MA performance and mechanisms are discussed in detail.Finally,the shortcomings,challenges and perspectives of MOF-derived PC-based MAMs are also presented.We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application. 展开更多
关键词 Metal-organic frameworks Porous carbon Microwave absorption material Reflection loss Effective absorption bandwidth
下载PDF
State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials 被引量:12
5
作者 Shuning Ren Haojie Yu +6 位作者 Li Wang Zhikun Huang Tengfei Lin Yudi Huang Jian Yang Yichuan Hong Jinyi Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期238-276,共39页
Microwave has been widely used in many fields,including communication,medical treatment and military industry;however,the corresponding generated radiations have been novel hazardous sources of pollution threating hu... Microwave has been widely used in many fields,including communication,medical treatment and military industry;however,the corresponding generated radiations have been novel hazardous sources of pollution threating human’s daily life.Therefore,designing high-performance microwave absorption materials(MAMs)has become an indispensable requirement.Recently,metal-organic frameworks(MOFs)have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure,high porosity and large specific surface area.Usually,MOF-derived MAMs exhibit excellent electrical conductivity,good magnetism and sufficient defects and interfaces,providing obvious merits in both impedance matching and microwave loss.In this review,the recent research progresses on MOF-derived MAMs were profoundly reviewed,including the categories of MOFs and MOF composites precursors,design principles,preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs.Finally,the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed. 展开更多
关键词 Microwave absorption materials Metal-organic frameworks Preparation methods Mechanisms of microwave absorption
下载PDF
Metal-Organic Framework Materials for Electrochemical Supercapacitors 被引量:6
6
作者 Ziwei Cao Roya Momen +10 位作者 Shusheng Tao Dengyi Xiong Zirui Song Xuhuan Xiao Wentao Deng Hongshuai Hou Sedat Yasar Sedar Altin Faith Bulut Guoqiang Zou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第11期172-204,共33页
Exploring new materials with high stability and capacity is full of challenges in sustainable energy conversion and storage systems.Metal-organic frameworks(MOFs),as a new type of porous material,show the advantages o... Exploring new materials with high stability and capacity is full of challenges in sustainable energy conversion and storage systems.Metal-organic frameworks(MOFs),as a new type of porous material,show the advantages of large specific surface area,high porosity,low density,and adjustable pore size,exhibiting a broad application prospect in the field of electrocatalytic reactions,batteries,particularly in the field of supercapacitors.This comprehensive review outlines the recent progress in synthetic methods and electrochemical performances of MOF materials,as well as their applications in supercapacitors.Additionally,the superiorities of MOFs-related materials are highlighted,while major challenges or opportunities for future research on them for electrochemical supercapacitors have been discussed and displayed,along with extensive experimental experiences. 展开更多
关键词 Metal-organic frameworks(MOFs) ELECTROCHEMISTRY SUPERCAPACITORS Electrode materials
下载PDF
Recent Advances in Multifunctional Reticular Framework Nanoparticles:A Paradigm Shift in Materials Science Road to a Structured Future 被引量:3
7
作者 Maryam Chafiq Abdelkarim Chaouiki Young Gun Ko 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期435-502,共68页
Porous organic frameworks(POFs)have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials,both in their pristine state and when subjected to v... Porous organic frameworks(POFs)have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials,both in their pristine state and when subjected to various chemical and structural modifications.Metal–organic frameworks,covalent organic frameworks,and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties,such as high crystallinity,intrinsic porosity,unique structural regularity,diverse functionality,design flexibility,and outstanding stability.This review provides an overview of the state-of-the-art research on base-stable POFs,emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials.Thereafter,the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements.It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category. 展开更多
关键词 Porous organic framework Reticular chemistry Reticular framework nanoparticle Environmental remediation Multifunctional material
下载PDF
Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials
8
作者 Jesus Ferrando‑Soria Antonio Fernandez 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期134-153,共20页
Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a varie... Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a variety of chemical families,such as hydrogen-bonded organic frameworks,porous organic salts,porous organic cages,C-H···πmicroporous crystals,supramolecular organic frameworks,π-organic frameworks,halogen-bonded organic framework,and intrinsically porous molecular materials.In some porous materials such as zeolites and metal organic frameworks,the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties.Therefore,considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials,we consider it appropriate to dedicate for the first time a critical review covering both topics.Herein,we will provide a summary of literature examples showcasing hierarchical POMMs,with a focus on their main synthetic approaches,applications,and the advantages brought forth by introducing hierarchy. 展开更多
关键词 Porous organic molecular materials HIERARCHY Hydrogen-bonded organic frameworks Porous cages FULLERENE
下载PDF
Two-dimensional MOF-based materials:Preparations and applications as electrodes in Li-ion batteries
9
作者 Narges Nobakht Seyyed Ahmad Etghani +1 位作者 Mohammad Hosseini Seyed Hamed Aboutalebi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期388-418,I0008,共32页
Two-dimensional(2D)metal-organic frameworks(MOFs)are rapidly emerging as a unique class of mushrooming family of 2D materials offering distinctive features,such as hierarchical porosity,extensive surface area,easily a... Two-dimensional(2D)metal-organic frameworks(MOFs)are rapidly emerging as a unique class of mushrooming family of 2D materials offering distinctive features,such as hierarchical porosity,extensive surface area,easily available active sites,and versatile,adaptable structures.These promising characteristics have positioned them as highly appealing alternatives for a wide range of applications in energy storage technologies,including lithium batteries.Nevertheless,the poor conductivity and limited stability of 2D MOFs have limited their real applications in electrochemical energy storage.These limitations have therefore warranted ongoing research to enhance the performance of 2D MOFs.Given the significance of 2D MOF-based materials as an emerging class of advanced materials,a multitude of strategy has been devised to address these challenges such as synthesizing 2D conductive MOFs and derivatives along with 2D MOF hybridization.One promising approach involves the use of 2D MOF derivatives,including transition metal oxides,which due to their abundant unsatu rated active metal sites and shorter diffusion paths,offer superior electrochemical performance.Additionally,by combining pristine 2D MOFs with other materials,hybrid 2D MOF materials can be created.These hybrids,with their enhanced stability and conductivity,can be directly utilized as active materials in lithium batteries.In the present review,we categorize 2D MOF-based materials into three distinct groups:pristine 2D MOFs,2D MOFderived materials,and 2D MOF hybrid materials.The synthesis methods for each group,along with their specific applications as electrode materials in lithium-ion batteries,are discussed in detail.This comprehensive review provides insights into the potential of 2D MOFs while highlighting the opportunities and challenges that are present in this evolving field. 展开更多
关键词 Li-ion batteries 2D materials 2D metal-organic frameworks Energy storage Synthesis
下载PDF
Metal-Organic Framework-Based Sulfur-Loaded Materials 被引量:2
10
作者 Meng Du Qing Li +2 位作者 Guangxun Zhang Feifei Wang Huan Pang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期215-230,共16页
Lithium-sulfur batteries(LSBs)are considered promising new energy storage systems given their outstanding theoretical energy densities.Nevertheless,issues such as low electrical conductivity and severe volume expansio... Lithium-sulfur batteries(LSBs)are considered promising new energy storage systems given their outstanding theoretical energy densities.Nevertheless,issues such as low electrical conductivity and severe volume expansion,along with the formation of polysulfides during cycling,restrict their practical applications.To overcome these issues,it is necessary to find suitable and effective sulfur host materials.Metal-organic frameworks(MOFs),which are porous crystalline materials in the bourgeoning developmental stages,have demonstrated enormous potential in LSBs owing to their high porosity and tunable porous structure.Herein,we provide a comprehensive overview of MOF-based sulfur-loaded materials and discuss the charge/discharge mechanisms,strategies of enhancing battery performance,sulfur loading methods,and applications in LSBs.An outlook on future directions,prospects,and possible obstacles for the development of these materials is also provided. 展开更多
关键词 lithium-sulfur batteries metal-organic frameworks sulfur-loaded materials
下载PDF
Crystalline framework nanosheets as platforms for functional materials
11
作者 Yun Fan Cheng Chen +3 位作者 Siyao Zhang Suoying Zhang Fengwei Huo Weina Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1986-2005,共20页
The integration of organic and inorganic materials has been widely used in various applications to generate novel functional nanomaterials characterized by unique properties.Functional crystalline framework nanosheets... The integration of organic and inorganic materials has been widely used in various applications to generate novel functional nanomaterials characterized by unique properties.Functional crystalline framework nanosheets and their synergistic effects have been studied recently for possessing the advantages of functional species as well as crystalline framework nanosheets.Hence,we have focused on the preparation methods and applications of functional crystalline framework nanosheets in this review.We introduced crystalline framework nanosheets and discussed the importance of integrating functional species with nanosheets to form functional crystalline framework nanosheets.Then,two aspects of the preparation methods of functional crystalline framework nanosheets were reviewed:in situ synthesis and post-synthesis modification.Subsequently,we discussed the properties of the crystalline framework nanosheets combined with various functional species and summarized their applications in catalysis,sensing,separation,and energy storage.Finally,we have shared our insights on the challenges of functional crystalline framework nanosheets,hoping to contribute to the knowledge base for optimizing the preparation methods,expanding categories,improving stability,and exploring potential applications. 展开更多
关键词 functional materials crystalline framework nanosheets in situ synthesis post-synthesis modification unique properties
下载PDF
A step‐growth strategy to grow vertical porous aromatic framework nanosheets on graphene oxide:Hybrid material‐confined Co for ammonia borane methanolysis
12
作者 Xiugang Li Qilu Yao +2 位作者 Rongwei Shi Minsong Huang Zhang‐Hui Lu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第10期64-76,共13页
The rational synthesis of a two-dimensional(2D)porous aromatic framework(PAF)with a controllable growth direction remains a challenge to overcome the limitation of traditional stacked 2D materials.Herein,a step-growth... The rational synthesis of a two-dimensional(2D)porous aromatic framework(PAF)with a controllable growth direction remains a challenge to overcome the limitation of traditional stacked 2D materials.Herein,a step-growth strategy is developed to fabricate a vertically oriented nitrogen-rich porous aromatic framework on graphene oxide(V-PAF-GO)using monolayer benzidine-functionalized GO(BZ-GO)as a molecular pillar.Then,the confined Co nanoparticle(NP)catalysts are synthesized by encapsulating ultra-small Co into the slit pores of V-PAF-GO.Due to the high nitrogen content,large specific surface area,and adequate slit pores,the optimized vertical nanocomposites V-PAF-GO provide abundant anchoring sites for metal NPs,leading to ultrafine Co NPs(1.4 nm).The resultant Co/V-PAF-GO catalyst shows an extraordinary catalytic activity for ammonia borane(AB)methanolysis,yielding a turnover frequency value of 47.6 min−1 at 25°C,comparable to the most effective non-noble-metal catalysts ever reported for AB methanolysis.Experimental and density functional theory studies demonstrate that the electron-donating effect of N species of PAF positively corresponds to the low barrier in methanol molecule activation,and the cleavage of the O–H bond in CH3OH has been proven to be the rate-determining step for AB methanolysis.This work presents a versatile step-growth strategy to prepare a vertically oriented PAF on GO to solve the stacking problem of 2D materials,which will be used to fabricate other novel 2D or 2D–2D materials with controllable orientation for various applications. 展开更多
关键词 2D-2D materials ammonia borane graphene oxide METHANOLYSIS porous aromatic frameworks
下载PDF
Materials Studio在金属有机框架材料中气体吸附的应用 被引量:5
13
作者 王宪飞 田林宇 +2 位作者 李潘之 陈小平 任万忠 《现代化工》 CAS CSCD 北大核心 2021年第11期34-38,43,共6页
综述了全尺度材料模拟软件(materials studio,MS)在MOFs中气体吸附方面的研究进展,重点介绍了MOFs中气体吸附模拟计算时MS软件各个模块的应用。对采用MS软件模拟计算MOFs中气体吸附性能提出了一些建议。
关键词 materials Studio软件 金属有机框架材料 吸附 分离 分子模拟
下载PDF
A review on anode materials for lithium/sodium-ion batteries 被引量:19
14
作者 Abhimanyu Kumar Prajapati Ashish Bhatnagar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期509-540,I0013,共33页
Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed... Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries. 展开更多
关键词 Lithium/Sodium-ion batteries Anode materials Nanomaterials Metal-organic framework Conversion materials Intercalated materials Alloying materials
下载PDF
Recent progress of advanced anode materials of lithium-ion batteries 被引量:19
15
作者 Hui Cheng Joseph G.Shapter +1 位作者 Yongying Li Guo Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期451-468,I0011,共19页
The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of ... The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of LIBs rely directly on the electrode materials.As far as the development of the advanced LIBs electrode is concerned,the improvement of anode materials is more urgent than the cathode materials.Industrial production of anode materials superior to commercial graphite still faces some challenges.This review sets out the most basic LIBs anode material design.The reaction principles and structural design of carbon materials,various transition metal oxides,silicon and germanium are summarized,and then the progress of other anode materials are analyzed.Due to the rapid development of metal organic frameworks(MOFs)in energy storage and conversion in recent years,the synthesis process and energy storage mechanism of nanostructures derived from MOF precursors are also discussed.From the perspective of novel structural design,the progress of various MOFs-derived materials for alleviating the volume expansion of anode materials is discussed.Finally,challenges for the future development of advanced anode materials for LIBs will be considered. 展开更多
关键词 Anode materials LIBS NANOmaterialS Metal organic frameworks
下载PDF
High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials 被引量:9
16
作者 Xuechao Pu Baozheng Jiang +4 位作者 Xianli Wang Wenbao Liu Liubing Dong Feiyu Kang Chengjun Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期126-140,共15页
Rechargeable aqueous zinc-ion batteries(ZIB s) have been gaining increasing interest for large-scale energy storage applications due to their high safety,good rate capability,and low cost.However,the further developme... Rechargeable aqueous zinc-ion batteries(ZIB s) have been gaining increasing interest for large-scale energy storage applications due to their high safety,good rate capability,and low cost.However,the further development of ZIB s is impeded by two main challenges:Currently reported cathode materials usually suffer from rapid capacity fading or high toxicity,and meanwhile,unstable zinc stripping/plating on Zn anode seriously shortens the cycling life of ZIBs.In this paper,metal-organic framework(MOF) materials are proposed to simultaneously address these issues and realize high-performance ZIB s with Mn(BTC) MOF cathodes and ZIF-8-coated Zn(ZIF-8@Zn) anodes.Various MOF materials were synthesized,and Mn(BTC) MOF was found to exhibit the best Zn^2+-storage ability with a capacity of 112 mAh g^-1.Zn^2+ storage mechanism of the Mn(BTC) was carefully studied.Besides,ZIF-8@Zn anodes were prepared by coating ZIF-8 MOF material on Zn foils.Unique porous structure of the ZIF-8 coating guided uniform Zn stripping/plating on the surface of Zn anodes.As a result,the ZIF-8@Zn anodes exhibited stable Zn stripping/plating behaviors,with 8 times longer cycle life than bare Zn foils.Based on the above,high-performance aqueous ZIBs were constructed using the Mn(BTC) cathodes and the ZIF-8@Zn anodes,which displayed an excellent long-cycling stability without obvious capacity fading after 900 charge/discharge cycles.This work provides a new opportunity for high-performance energy storage system. 展开更多
关键词 Zinc-ion battery Metal-organic framework Cathode material Zn anode
下载PDF
Recent progress on MOF-derived carbon materials for energy storage 被引量:18
17
作者 Jincan Ren Yalan Huang +9 位作者 He Zhu Binghao Zhang Hekang Zhu Shenghui Shen Guoqiang Tan Feng Wu Hao He Si Lan Xinhui Xia Qi Liu 《Carbon Energy》 CAS 2020年第2期176-202,共27页
Metal-organic frameworks(MOFs)are of quite a significance in the field of inorganic-organic hybrid crystals.Especially,MOFs have attracted increasing attention in recent years due to their large specific surface area,... Metal-organic frameworks(MOFs)are of quite a significance in the field of inorganic-organic hybrid crystals.Especially,MOFs have attracted increasing attention in recent years due to their large specific surface area,desirable electrical conductivity,controllable porosity,tunable geometric structure,and excellent thermal/chemical stability.Some recent studies have shown that carbon materials prepared by MOFs as precursors can retain the privileged structure of MOFs,such as large specific surface area and porous structure and,in contrast,realize in situ doping with heteroatoms(eg,N,S,P,and B).Moreover,by selecting appropriate MOF precursors,the composition and morphology of the carbon products can be easily adjusted.These remarkable structural advantages enable the great potential of MOF-derived carbon as high-performance energy materials,which to date have been applied in the fields of energy storage and conversion systems.In this review,we summarize the latest advances in MOF-derived carbon materials for energy storage applications.We first introduce the compositions,structures,and synthesis methods of MOF-derived carbon materials,and then discuss their applications and potentials in energy storage systems,including rechargeable lithium/sodium-ion batteries,lithium-sulfur batteries,supercapacitors,and so forth,in detail.Finally,we put forward our own perspectives on the future development of MOF-derived carbon materials. 展开更多
关键词 carbon materials energy storage and conversion metal-organic frameworks
下载PDF
Tightened1D/3Dcarbonheterostructure infiltratingphase change materials for solar-thermoelectric energy harvesting:Faster and better 被引量:2
18
作者 Zhaodi Tang Piao Cheng +3 位作者 Panpan Liu Yan Gao Xiao Chen Ge Wang 《Carbon Energy》 SCIE CSCD 2023年第6期104-117,共14页
Extensive use of thermal energy in daily life is ideal for reducing carbon emissions to achieve carbon neutrality;however,the effective collection of thermal energy is a major hurdle.Thermoelectric(TE)conversion techn... Extensive use of thermal energy in daily life is ideal for reducing carbon emissions to achieve carbon neutrality;however,the effective collection of thermal energy is a major hurdle.Thermoelectric(TE)conversion technology based on the Seebeck effect and thermal energy storage technology based on phase change materials(PCMs)represent smart,feasible,and research-worthy approaches to overcome this hurdle.However,the integration of multiple thermal energy sources freely existing in the environment for storage and output of thermal and electrical energy simultaneously still remains a huge challenge.Herein,three-dimensional(3D)nanostructured metal-organic frameworks(MOFs)are in situ nucleated and grown onto carbon nanotubes(CNTs)via coordination bonding.After calcination,the prepared core-shell structural CNTs@MOFs are transformed into tightened 1D/3D carbon heterostructure loading Co nanoparticles for efficient solar-thermoelectric energy harvesting.Surprisingly,the corresponding composite PCMs show a record-breaking solar-thermal conversion efficiency of 98.1%due to the tightened carbon heterostructure and the local surface plasmon resonance effect of Co nanoparticles.Moreover,our designed all-in-one composite PCMs are also capable of creating an electrical potential of 0.5 mV based on the Seebeck effect without a TE generator.This promising approach can store thermal and electrical energy simultaneously,providing a new direction in the design of advanced all-in-one multifunctional PCMs for thermal energy storage and utilization. 展开更多
关键词 carbon neutrality metal-organic framework phase change materials solar-thermoelectric conversion thermal energy storage
下载PDF
Synthesis Design and Research Progress of MOF Materials in Biomedicine
19
作者 Yu LIN Xiaoli LUO +1 位作者 Fang LI Fengfeng XIE 《Agricultural Biotechnology》 CAS 2020年第4期64-67,共4页
Compared with traditional materials,metal-organic framework materials(MOFs)have the characteristics of drug release controllability,degradability,designability and adjustability of composition and structure,excellent ... Compared with traditional materials,metal-organic framework materials(MOFs)have the characteristics of drug release controllability,degradability,designability and adjustability of composition and structure,excellent load capacity,and designability and adjustability of channel shape and size,and have shown a wide range of application value in the field of biomedicine.In this paper,based on the structural characteristics of MOFs,the synthetic design of MOF materials was expounded,and the research achievements of MOF materials in biomedicine in recent years were reviewed. 展开更多
关键词 Metal-organic framework material SYNTHESIS BIOMEDICINE APPLICATION
下载PDF
Covalent organic frameworks/carbon nanotubes composite with cobalt(II)pyrimidine sites for bifunctional oxygen electrocatalysis
20
作者 Zhuangzhuang Wu Lijuan Feng +6 位作者 Zhe Lu Xinxin Yu Yuzhen Zhao Junming Luo Shaolei Wang Xinlong Tian Qi Chen 《Nano Materials Science》 EI CAS CSCD 2024年第4期419-427,共9页
With characteristics and advantages of functional composite materials,they are commendably adopted in numerous fields especially in oxygen electrocatalysis,which is due to the significant synergies between various com... With characteristics and advantages of functional composite materials,they are commendably adopted in numerous fields especially in oxygen electrocatalysis,which is due to the significant synergies between various components.Herein,a novel bifunctional oxygen electrocatalyst(Co-CNT@COF-Pyr)has been synthesized through in-situ growth of covalent organic frameworks(COFs)layers on the outer surface of highly conductive carbon nanotubes(CNTs)followed by coordination with Co(Ⅱ).For electrocatalytic OER,Co-CNT@COF-Pyr reveals a low overpotential(438 mV)in alkaline electrolyte(1.0 M aqueous solution of KOH)with a current density of 10 mA cm^(-2),which is comparable to most discovered COF-based catalysts.For electrocatalytic ORR,CoCNT@COF-Pyr exhibits a low H_(2)O_(2) yield range(9.0%-10.1%)and a reaction pathway close to 4e^(-)(n=3.82-3.80)in alkaline electrolyte(0.1 M aqueous solution of KOH)within the test potential range of 0.1-0.6 V vs.RHE,which is superior to most reported COF-based catalysts.Hence,this research could not only offer an innovative insight into the construction of composites,but also facilitate the practical application of renewable fuel cells,closed water cycle,and rechargeable metal-air batteries. 展开更多
关键词 Oxygen electrocatalysis Covalent organic frameworks Carbon nanotubes Composite materials
下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部