Nanoparticles of biodegradable methoxy poly(ethylene glycol)-b-polyester amphiphilic diblock copolymers have widely investigated for use as controlled release drug delivery carriers. In this work, blend nanoparticles ...Nanoparticles of biodegradable methoxy poly(ethylene glycol)-b-polyester amphiphilic diblock copolymers have widely investigated for use as controlled release drug delivery carriers. In this work, blend nanoparticles of methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (MPEG-b-PDLL) and methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (MPEG- b-PCL) were prepared by nano-precipitation method without any surfactants. 1H-NMR spectra showed significant difference in integral peak areas, suggesting the nanoparticles with different MPEG-b-PDLL/MPEG-b-PCL blend ratios can be prepared. Transmission electron microscope revealed the blend nanoparticles had nearly spherical in shape with smooth surface. Average size of the blend nanoparticles obtained from light-scattering analysis slightly decreased with increase in blend ratio of MPEG-b-PCL. The MPEG-b-PDLL and MPEG-b-PCL were amorphous and semi-crystalline, respectively. Thermal transition properties of the blend nanoparticles were studied with differential scanning calorimetry (DSC). The DSC results showed that glass transition temperatures of the blend nanoparticles decreased and heats of melting steadily increased, while the melting temperature did not change as the MPEG-b-PCL blend ratio increased. This indicates the miscibility of MPEG-b-PDLL and MPEG-b-PCL in the amorphous phase of the blend nanoparticles. Thermogravimetric analysis showed that the blend nanoparticles clearly exhibited two thermal decomposition steps due to MPEG-b-PDLL decomposition followed with MPEG-b-PCL. The blend nanoparticles had two temperatures of maximum decomposition rate (Td, max) accorded to each blend component. The Td, max of MPEG-b- PDLL phase significantly decreased, while Td, max of MPEG-b-PCL phase did not change as the MPEG-b-PCL blend ratio increased. These results suggested that the desired thermal properties of blend nanoparticles can be tailored by varying the blend ratio.展开更多
Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples ...Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples at a relatively low temperature(170℃)using the cold sintering process(CSP)with AgNO_(3)solution as a transient liquid agent.The effect of AgNO_(3)addition during CSP on the micro-structure and TE properties was investigated.The results from phase,composition and microstructure analyses showed that the introduc-tion of AgNO_(3)solution induced the formation of Ag nano-precipitates within the Ag_(2)Se matrix.Although the nano-precipitates do not af-fect the phase and crystal structure of orthorhombicβ-Ag_(2)Se,they suppressed crystal growth,leading to reduced crystallite sizes.The samples containing Ag nano-precipitates also exhibited high porosity and low bulk density.Consequently,these effects contributed to sig-nificantly enhanced electrical conductivity and a slight decrease in the Seebeck coefficient when small Ag concentrations were incorpor-ated.This resulted in an improved average power factor from~1540μW·m^(−1)·K^(−2)for pure Ag_(2)Se to~1670μW·m^(−1)·K^(−2)for Ag_(2)Se with additional Ag precipitates.However,excessive Ag addition had a detrimental effect on the power factor.Furthermore,thermal conductiv-ity was effectively suppressed in Ag_(2)Se fabricated using AgNO_(3)-assisted CSP,attributed to enhanced phonon scattering at crystal inter-faces,pores,and Ag nano-precipitates.The highest figure-of-merit(zT)of 0.92 at 300 K was achieved for the Ag_(2)Se with 0.5wt%Ag dur-ing CSP fabrication,equivalent to>20%improvement compared to the controlled Ag_(2)Se without extra Ag solution.Thus,the process outlined in this study presents an effective strategy to tailor the microstructure of bulk Ag_(2)Se and enhance its TE performance at room temperature.展开更多
Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L12 nano-precipitates at different temperatures,as well as the interactions betw...Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L12 nano-precipitates at different temperatures,as well as the interactions between the dislocations and nano-precipitates within the nanotwins.The simulation results demonstrate that both the yield stress and flow stress in the nanotwinned NiCo-based alloys with nano-precipitates decrease as the temperature rises,because the higher temperatures lead to the generation of more defects during yielding and lower dislocation density during plastic deformation.Moreover,the coherent L12 phase exhibits excellent thermal stability,which enables the hinderance of dislocation motion at elevated temperatures via the wrapping and cutting mechanisms of dislocations.The synergistic effect of nanotwins and nano-precipitates results in more significant strengthening behavior in the nanotwinned NiCo-based alloys under high temperatures.In addition,the high-temperature mechanical behavior of nanotwinned NiCo-based alloys with nano-precipitates is sensitive to the size and volume fraction of the microstructures.These findings could be helpful for the design of nanotwins and nano-precipitates to improve the high-temperature mechanical properties of NiCo-based alloys.展开更多
The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and ...The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Nirich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi-MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu-Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.展开更多
High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipit...High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipitates of the spray-formed fine-grained Al-Cu-Mg alloy during rapid cold stamping deformation.Results show that the extruded Al-Cu-Mg alloy undergoes obvious re-dissolution and re-precipitation during the rapid cold-stamping deformation process.The plasticθ′phase has a slower re-dissolution rate than the brittle S′phase.The long strip-shaped S′phases and the acicularθ′phases in Al-Cu-Mg alloy after three passes of cold stamping basically re-dissolved to form a supersaturated solid solution.A large number of fine granular balanceθphases precipitate after four passes of rapid cold-stamping deformation.Rapid cold stamping deformation causes the S′phase andθ′phase to break and promote the nano-precipitate phases to re-dissolve.The high distortion free energy of the matrix promotes the precipitation of the equilibriumθphase,and the hardness of the alloy obviously increases from HB 55 to HB 125 after the rapid cold stamping process.展开更多
Cu precipitation behaviors in two Cu-bearing austenitic antibacterial stainless steels,type 304 and type 317L,were systematically studied by using relatively simple methods for materials analysis,including micro-hardn...Cu precipitation behaviors in two Cu-bearing austenitic antibacterial stainless steels,type 304 and type 317L,were systematically studied by using relatively simple methods for materials analysis,including micro-hardness,electrical resistivity,electrochemical impedance spectroscopy,X-ray diffraction and differential scanning calorimetry.The results indicated that after aging at elevated temperature,the micro-hardness, electrical resistivity,electrochemical impedance and lattice constant of the steel were all varied at different degrees due to the precipitation and growth of Cu-rich phases.The results also showed that the heat evolution during the process of Cu precipitation could be sensitively detected by means of differential scanning calorimetry,obtainning the starting temperature,peak temperature,peak area of the Cu-rich precipitation,and even the activation energy by calculation.The results confirmed that the Cu-rich phased precipitation in the Cu-bearing austenitic antibacterial stainless steel should be a thermal activation process controlled by Cu diffusion.All the materials analysis methods used in this study can be more simple and effective for application in R & D of the Cu-bearing antibacterial stainless steels.展开更多
The major phases in the Cu-rich alloys containing Co,Cr and Si are α-Cu(a solid solution of Co,Cr and Si in Cu),χ-phase(Co_5Cr_3Si_2)and Co_2Si.In comparison with reference sample,it has been detected that the cryst...The major phases in the Cu-rich alloys containing Co,Cr and Si are α-Cu(a solid solution of Co,Cr and Si in Cu),χ-phase(Co_5Cr_3Si_2)and Co_2Si.In comparison with reference sample,it has been detected that the crystal structure of Co_5Cr_3Si_2 is cubic,α-Mn type with a=0.8694 nm.The melting temperature of χ-phase and the alloy are higher than that of the pure Cu,namely,1535 and 1389 K respectively.During ageing treatment,the Co_2Si phase precipitates out from α-Cu and χ-phase simultaneously,but the hardening effect is mainly contributed by the precipitation from α-Cu.展开更多
Different proportions of commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy (HEA) powder were ball-milled (BM) for different time. The powder was consolidated by hot extrusion method. The mic...Different proportions of commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy (HEA) powder were ball-milled (BM) for different time. The powder was consolidated by hot extrusion method. The microstructures of the milled powder and bulk alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties of the extruded alloy were examined by mechanical testing machine. The results show that after BM, the particle size and microstructures of the mixed alloy powder change obviously. After 48 h BM, the average size of mixed powder is about 30 nm, and then after hot extrusion, the average size of grains reaches about 70 rim. The compressive strength of the extruded alloy reaches 710 MPa under certain conditions of milling time and composition. As a result of the identification of the nano-/micro-strueture-property relationship of the samples, such high strength is attributed mainly to the nanocrystalline grains of a(Al) and nanoscaled FeNiCrCoAl3 particles, and the fine secondary phase of Al2Cu and Fe-rich phases.展开更多
The mechanical properties of an austenite-based Fe-Mn-Al-C lightweight steel were improved by co-precipitation of nanoscale Cu-rich and κ-carbide particles.The Fe-28Mn-9Al-0.8C-(0,3)Cu (wt.%) strips were near-rapidly...The mechanical properties of an austenite-based Fe-Mn-Al-C lightweight steel were improved by co-precipitation of nanoscale Cu-rich and κ-carbide particles.The Fe-28Mn-9Al-0.8C-(0,3)Cu (wt.%) strips were near-rapidly solidified and annealed in the temperature range from 500 ℃ to 700 ℃.The microstructure evolution and mechanical properties of the steel under different annealing processes were studied.Microstructural analysis reveals that nanoscale κ-carbides and Cu-rich particles precipitate in the austenite and ferrite of the steel in this annealing temperature range.Co-precipitation of nanoscale Cu-rich particles and κ-carbides provides an obvious increment in the yield strength.At the annealing temperature of 600 ℃,both the yield strength and ultimate tensile strength of Fe-28Mn-9Al-0.8C-3Cu (wt.%) steel strip are the highest.The total elongation is 25%,which is obviously higher than that of Cu-free steel strips,for the addition of Cu reduces the large sized κ-carbides precipitated along austenite/ferrite interfaces.When the annealing temperature rises to 700 ℃,the strength and ductility of the two steel strips deteriorate due to the formation of massive intergranular κ-carbides precipitated along austenite/ferrite interfaces.It can be concluded that a proper co-precipitation of Cu-rich particles and κ-carbides would improve the properties of austenite-based Fe-Mn-Al-C steel.展开更多
A novel low-cost Mg-Al-Ca-Zn-Mn-based alloy was developed to simultaneously improve its strength and ductility.The high yield strength of 411 MPa and the high elongation to failure of~8.9%have been achieved in the as-...A novel low-cost Mg-Al-Ca-Zn-Mn-based alloy was developed to simultaneously improve its strength and ductility.The high yield strength of 411 MPa and the high elongation to failure of~8.9%have been achieved in the as-extruded Mg-1.3Al-1.2Ca-0.5Zn-0.6Mn(wt%)sample.Microstructure characterizations showed that the high strength is mainly associated with the ultra-fined dynamically recrystallized(DRXed)grains.Moreover,high-density dislocations in the un-DRXed region and nano-precipitates are distributed among theα-Mg matrix.The high ductility property can be ascribed to the high volume fraction of DRXed grains with a much randomized texture,as well as the formations of high-density subgrains in the un-DRXed grain regions.展开更多
Strengthening due to precipitation of Cu in the a-Fe matrix is an important phenomenon utilized in the design of HSLA steels. In the present work, the microstructure of supersaturated solid solution in Fe-1.18%Cu bina...Strengthening due to precipitation of Cu in the a-Fe matrix is an important phenomenon utilized in the design of HSLA steels. In the present work, the microstructure of supersaturated solid solution in Fe-1.18%Cu binary alloy was investigated by means of high resolution electron microscopy. The results indicated that the solid solution was heterogeneous, there were lots of Cu atom clusters, which consisted of diffractive stripe microstructure similar to twin crystal. Orientation deviation was observed between two (110)o planes in diffractive stripes, which results in light and shade contrast. Furthermore, formation mechanisms of the nanometre stripe microstructure were discussed in terms of the interaction of Cu and Fe atoms in the Fe-Cu binary alloys.展开更多
Microstructure evolution in neutron irradiated Reactor Pressure Vessel (RPV) steels was experimentally simulated through an improved degradation procedure in this study. The degradation procedure includes austenitiz...Microstructure evolution in neutron irradiated Reactor Pressure Vessel (RPV) steels was experimentally simulated through an improved degradation procedure in this study. The degradation procedure includes austenitizing at 1 150℃ and water quench, deformation 10% and 30% respectively, and then thermal aging at 500℃ for different period of time. The microstructure of the specimens was analyzed in details using transmission electron microscopy (TEM). The micro-hardness test results showed that all the hardness curves of undeformed, 10% pre-deformed and 30% pre-deformed specimens have two micro-hardness peaks with the first peak value corresponding to different thermal aging time of 1 hour, 5 hours and 10 hours, respectively. It was revealed that the hardness curves were influenced by the precipitation of Cu-rich precipitates (CRPs) and carbides, deposition of martensite and work hardening.展开更多
P450(cytochrome P450)is a supergene family,which is involved in various metabolic pathways in plants.Based on previous study,we found some of cucumber P450 mRNAs were systemic mobile in cucumber/pumpkin grafts.However...P450(cytochrome P450)is a supergene family,which is involved in various metabolic pathways in plants.Based on previous study,we found some of cucumber P450 mRNAs were systemic mobile in cucumber/pumpkin grafts.However,the reason that why P450 mRNAs were endorsed as signaling,and what specific motif(s)did they harbored is not clear yet.Here,we first identified 221 CsaP450 genes in cucumber genomewide level.Combining with graft-transmissiblemRNAs datasets in cucumber,we elucidated 15mobile-CsaP450-coding genes,of which 5 and 10 belonged to A-type and non-A type respectively.Compared with Arabidopsis and pumpkin(Cucubit moschata)graft-induced-transmissible P450 mRNAs,a phylogenetic treewas constructed and divided into eight clans by usingmultiple-sequence alignment.Gene ontology(GO)enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG)annotations indicated that the expression patterns of the mobile-mRNA-coding CsaP450 genes in different tissues of cucumber was specifically enriched in oxidoreductase activity and secondary metabolic pathways.The structures and motifs of these 15 mobile-mRNA-coding CsaP450 genes and their types of regulatory elements told that the proportion of CU-rich motifs was higher than nonmobile-mRNA-coding CsaP450 genes.The integrated analysis of mobility direction and mRNA abundance of 15 mobilemRNA-coding CsaP450 genes allowed to conclude that there was rarely relationship between them.The study provided a new insight into the relationship between the motifs and functional characterization of mobile-mRNA-coding P450 genes of cucumber in genome-wide levels.展开更多
Experiments conducted to determine the effect of copper addition on the machinability of plastic mold steel, 4Cr16Mo, were presented. The machinability of mold steel 4Cr16Mo was visibly improved by adding Cu. The top ...Experiments conducted to determine the effect of copper addition on the machinability of plastic mold steel, 4Cr16Mo, were presented. The machinability of mold steel 4Cr16Mo was visibly improved by adding Cu. The top wear of 4Cr16Mo with copper was less than that without copper. The Cu-rich phase had the effect of a lubricant and the heat conductivity, which reduced cutting-tool wear, improved machinability, and increased the service life of the cutting-tool. Increasing of copper addition decreased the hot-working character of 4Cr16Mo. The optimal hot-working parameters for 4Cr16Mo with copper were determined by the tensile test and the compression test. The rate of deformation should be adopted as 0.6 s-1. The heating-up temperature, initial forging temperature, and terminal forging temperature were 1200℃, 1150℃, and 950℃, respectively.展开更多
Fe-12Cr-2.5W-x Si-0.4Ti-0.3Y_(2)O_(3)alloys were fabricated by mechanical alloying and vacuum sintering.The effect of sintering temperature and Si content on the microstructure and properties of the alloy was investig...Fe-12Cr-2.5W-x Si-0.4Ti-0.3Y_(2)O_(3)alloys were fabricated by mechanical alloying and vacuum sintering.The effect of sintering temperature and Si content on the microstructure and properties of the alloy was investigated systematically.The experimental results show that the relative density and tensile strength of the alloy were increased with the elevating of sintering temperature and Si content within a certain range.The alloy with 1wt%Si sintered at 1350℃exhibited superior properties,and the relative density and tensile strength were 96.8%and 692.7 MPa,respectively.HAADF and EDAX analysis of nano-precipitation in the matrix indicated that Si could combine with Y,Ti,and O in the sintering process,which was uniformly distributed with the size of 10 nm.Portion of Y_(2)O_(3)had not completely dissolved in the milling process,which was retained in the matrix of the alloy.展开更多
The effect of adding a small amount of Ag on the microstructure evolution and superplastic properties of Mg-Y-Er-Zn(WEZ612) alloys was systematically studied.The basal texture of the refined WEZ612 alloy produced by e...The effect of adding a small amount of Ag on the microstructure evolution and superplastic properties of Mg-Y-Er-Zn(WEZ612) alloys was systematically studied.The basal texture of the refined WEZ612 alloy produced by equal channel angular pressing was altered to a non-basal structure upon the addition of Ag.Ag addition also refined the grain size and promoted the formation of a large number of nano-14H-long period stacking ordered phases.Using high-resolution transmission electron microscopy,many nano-precipitated phases were detected on the basal plane of the Mg-Y-Er-Zn-1Ag(WEZ612-1Ag) alloy,The nano-precipitated phases on the basal plane improved the thermal stability of the alloy,lowered the deformation activation energy(Q),and improved the stress sensitivity index(m).At 523 K with a strain rate of 10^(-2) s^(-1),the Q value of WEZ612 was higher than that of WEZ612-1Ag(299.14 and 128.5 kJ mol^(-1),respectively).In contrast,the m value of the WEZ612 alloy(0.16) was lower than that of the WEZ612-1Ag alloy(0.46).At 623 K with a tensile rate of 10^(-2) s^(-1),the WEZ612 and WEZ612-1Ag alloys were elongated by 182% and 495%,respectively,with the latter exhibiting high-strain-rate and low-temperature superplasticity.The improved superplasticity of the WEZ612-1Ag alloy is attributed to the nano-precipitated phases,which effectively limit the cavity extension during superplastic deformation.展开更多
A study was conducted on the formation of a Cu-rich phase at the scale/steel interface of Cu-containing steel by high-temperature oxidation with varying amounts of A1 and Ni. Both A1 and Ni were found to help decrease...A study was conducted on the formation of a Cu-rich phase at the scale/steel interface of Cu-containing steel by high-temperature oxidation with varying amounts of A1 and Ni. Both A1 and Ni were found to help decrease the amount of the Cu-rich phase at the interface. Analysis of the effects by these elements was conducted in terms of the melting point of the Cu-rich phase, the solid solubility of Cu in austenite, the rate of oxidation, and the amount of Cu-rich phase occlusions in scales. Because of selective oxidation,in which A1 and Ni are oxidized more and less preferentially than Fe, respectively, A1 was weakly concentrated at the interface whereas Ni was more heavily concentrated in it. Thus, A1 exerted no effect on the melting point of the Cu-rich phase, whereas Ni raised its melting point. A1, which was applied at contents of less than 2.0%, decreased the solubility of Cu in austenite but this effect weakened at the interface during oxidation. By contrast,Ni increased the solubility of Cu, and this effect was strengthened with oxidation. Both A1 and Ni promoted internal oxidation and the formation of occlusions.展开更多
To resolve the strength-ductility trade-off problem for high-strength Mg alloys,we prepared a high performance Mg-8Gd-3Y-0.5 Zr(wt%)alloy with yield strength of 371 MPa,ultimate tensile strength of 419MPa and elongati...To resolve the strength-ductility trade-off problem for high-strength Mg alloys,we prepared a high performance Mg-8Gd-3Y-0.5 Zr(wt%)alloy with yield strength of 371 MPa,ultimate tensile strength of 419MPa and elongation of 15.8%.The processing route involves extrusion,pre-deformation and aging,which leads to a bimodal structure and nano-precipitates.Back-stress originated from the deformationincompatibility in the bimodal-structure alloy can improve ductility.In addition,dislocation density in coarse grains increased during the pre-deformation strain of 2%,and the dislocations in coarse grains can promote the formation of chain-like nano-precipitates during aging treatment.The chain-like nanoprecipitates can act as barriers for dislocations slip and the existing mobile dislocations enable good ductility.展开更多
The precipitation characteristics and effect on strengthening mechanism of Cu-rich phases during short-time and long-time aging for Super 304H steels with different Cu content were investigated using X-ray diffraction...The precipitation characteristics and effect on strengthening mechanism of Cu-rich phases during short-time and long-time aging for Super 304H steels with different Cu content were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that the size of Cu-rich phase particles increases, the interspace of Cu-rich phase particles decreases and the density of Curich phases increases with the increase of Cu content during short-time aging (approximately 800 h) at 650℃ for Super 304H steels. During long-time aging (more than 2 000 h) at 650 ℃, Cu-rich phase precipitates sufficiently and the strengthening effect of Cu-rich phase is preferable in Super 304H steel containing Cu of 4%. The strengthening effect of Cu-rich phase in Super 304H steels containing Cu of 2.2% or 5% is weaker than that with Cu of 4% during long-time aging (more than 2 000 h).展开更多
The Cu-containing austenitic heat-resistant steel 18Cr9Ni3CuNbN, which is being used as superheater and reheater tube material for modern ultra-super-critical (USC) power plants all over the world, has been investig...The Cu-containing austenitic heat-resistant steel 18Cr9Ni3CuNbN, which is being used as superheater and reheater tube material for modern ultra-super-critical (USC) power plants all over the world, has been investigated at 650 ℃ long time aging till 10 000 h. SEM, TEM and 3DAP (three dimensional atom probe) have been used to follow microstructural changes with mechanical property variations. Experimental results show that Cu-rich phase and MX precipitate in the grains as well as M 23 C 6 precipitates at grain boundaries are the main precipitation strengthening phases in this steel. Among them Cu-rich phase is the most important strengthening phase. Homogeneous distribution of very fine nano-size Cu-rich phase has been formed at very early stage of 650 ℃ aging (less than 1 h). Cu atoms gradually concentrate to Cu-rich particles and the other elements (such as Fe, Cr, Ni etc) diffuse away from Curich particles to γ-matrix with the increasing of aging time at 650 ? C. The growth rate of Cu-rich phase at 650 ℃ long time aging is very slow and the average diameters of Cu-rich phase have been determined by TEM method. Cu-rich phase keeps in about 30 nm till 650 ℃ aging for 10 000 h. It shows that nano-size Cu-rich phase precipitation strengthening can be kept for long time aging at 650 ℃ because of its excellent stability at high temperatures. According to structure stability study and mechanical properties determination results the Cu-rich phase precipitation sequence and its strengthening mechanism model have been suggested and discussed.展开更多
文摘Nanoparticles of biodegradable methoxy poly(ethylene glycol)-b-polyester amphiphilic diblock copolymers have widely investigated for use as controlled release drug delivery carriers. In this work, blend nanoparticles of methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (MPEG-b-PDLL) and methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (MPEG- b-PCL) were prepared by nano-precipitation method without any surfactants. 1H-NMR spectra showed significant difference in integral peak areas, suggesting the nanoparticles with different MPEG-b-PDLL/MPEG-b-PCL blend ratios can be prepared. Transmission electron microscope revealed the blend nanoparticles had nearly spherical in shape with smooth surface. Average size of the blend nanoparticles obtained from light-scattering analysis slightly decreased with increase in blend ratio of MPEG-b-PCL. The MPEG-b-PDLL and MPEG-b-PCL were amorphous and semi-crystalline, respectively. Thermal transition properties of the blend nanoparticles were studied with differential scanning calorimetry (DSC). The DSC results showed that glass transition temperatures of the blend nanoparticles decreased and heats of melting steadily increased, while the melting temperature did not change as the MPEG-b-PCL blend ratio increased. This indicates the miscibility of MPEG-b-PDLL and MPEG-b-PCL in the amorphous phase of the blend nanoparticles. Thermogravimetric analysis showed that the blend nanoparticles clearly exhibited two thermal decomposition steps due to MPEG-b-PDLL decomposition followed with MPEG-b-PCL. The blend nanoparticles had two temperatures of maximum decomposition rate (Td, max) accorded to each blend component. The Td, max of MPEG-b- PDLL phase significantly decreased, while Td, max of MPEG-b-PCL phase did not change as the MPEG-b-PCL blend ratio increased. These results suggested that the desired thermal properties of blend nanoparticles can be tailored by varying the blend ratio.
基金supported by the National Research Council of Thailand(NRCT)(Nos.N42A650237 and N41A661163)the National Science,Research and Innovation Fund(NSRF)via the Fundamental Fund of Khon Kaen Universitythe NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(No.B37G660011).
文摘Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples at a relatively low temperature(170℃)using the cold sintering process(CSP)with AgNO_(3)solution as a transient liquid agent.The effect of AgNO_(3)addition during CSP on the micro-structure and TE properties was investigated.The results from phase,composition and microstructure analyses showed that the introduc-tion of AgNO_(3)solution induced the formation of Ag nano-precipitates within the Ag_(2)Se matrix.Although the nano-precipitates do not af-fect the phase and crystal structure of orthorhombicβ-Ag_(2)Se,they suppressed crystal growth,leading to reduced crystallite sizes.The samples containing Ag nano-precipitates also exhibited high porosity and low bulk density.Consequently,these effects contributed to sig-nificantly enhanced electrical conductivity and a slight decrease in the Seebeck coefficient when small Ag concentrations were incorpor-ated.This resulted in an improved average power factor from~1540μW·m^(−1)·K^(−2)for pure Ag_(2)Se to~1670μW·m^(−1)·K^(−2)for Ag_(2)Se with additional Ag precipitates.However,excessive Ag addition had a detrimental effect on the power factor.Furthermore,thermal conductiv-ity was effectively suppressed in Ag_(2)Se fabricated using AgNO_(3)-assisted CSP,attributed to enhanced phonon scattering at crystal inter-faces,pores,and Ag nano-precipitates.The highest figure-of-merit(zT)of 0.92 at 300 K was achieved for the Ag_(2)Se with 0.5wt%Ag dur-ing CSP fabrication,equivalent to>20%improvement compared to the controlled Ag_(2)Se without extra Ag solution.Thus,the process outlined in this study presents an effective strategy to tailor the microstructure of bulk Ag_(2)Se and enhance its TE performance at room temperature.
基金Project supported by the National Natural Science Foundation of China(Grant No.12072317)the Natural Science Foundation of Zhejiang Province(Grant No.LZ21A020002)+2 种基金Ligang Sun gratefully acknowledges the support received from the Guangdong Basic and Applied Basic Research Foundation(Grant No.22022A1515011402)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant No.GXWD20231130102735001)Development and Reform Commission of Shenzhen(Grant No.XMHT20220103004).
文摘Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L12 nano-precipitates at different temperatures,as well as the interactions between the dislocations and nano-precipitates within the nanotwins.The simulation results demonstrate that both the yield stress and flow stress in the nanotwinned NiCo-based alloys with nano-precipitates decrease as the temperature rises,because the higher temperatures lead to the generation of more defects during yielding and lower dislocation density during plastic deformation.Moreover,the coherent L12 phase exhibits excellent thermal stability,which enables the hinderance of dislocation motion at elevated temperatures via the wrapping and cutting mechanisms of dislocations.The synergistic effect of nanotwins and nano-precipitates results in more significant strengthening behavior in the nanotwinned NiCo-based alloys under high temperatures.In addition,the high-temperature mechanical behavior of nanotwinned NiCo-based alloys with nano-precipitates is sensitive to the size and volume fraction of the microstructures.These findings could be helpful for the design of nanotwins and nano-precipitates to improve the high-temperature mechanical properties of NiCo-based alloys.
基金supported by the National Science and Technology Support Project of China (No.2006BAB01B08)
文摘The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Nirich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi-MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu-Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.
基金Project(2019JJ60050) supported by the Natural Science Foundation of Hunan Province,China
文摘High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipitates of the spray-formed fine-grained Al-Cu-Mg alloy during rapid cold stamping deformation.Results show that the extruded Al-Cu-Mg alloy undergoes obvious re-dissolution and re-precipitation during the rapid cold-stamping deformation process.The plasticθ′phase has a slower re-dissolution rate than the brittle S′phase.The long strip-shaped S′phases and the acicularθ′phases in Al-Cu-Mg alloy after three passes of cold stamping basically re-dissolved to form a supersaturated solid solution.A large number of fine granular balanceθphases precipitate after four passes of rapid cold-stamping deformation.Rapid cold stamping deformation causes the S′phase andθ′phase to break and promote the nano-precipitate phases to re-dissolve.The high distortion free energy of the matrix promotes the precipitation of the equilibriumθphase,and the hardness of the alloy obviously increases from HB 55 to HB 125 after the rapid cold stamping process.
文摘Cu precipitation behaviors in two Cu-bearing austenitic antibacterial stainless steels,type 304 and type 317L,were systematically studied by using relatively simple methods for materials analysis,including micro-hardness,electrical resistivity,electrochemical impedance spectroscopy,X-ray diffraction and differential scanning calorimetry.The results indicated that after aging at elevated temperature,the micro-hardness, electrical resistivity,electrochemical impedance and lattice constant of the steel were all varied at different degrees due to the precipitation and growth of Cu-rich phases.The results also showed that the heat evolution during the process of Cu precipitation could be sensitively detected by means of differential scanning calorimetry,obtainning the starting temperature,peak temperature,peak area of the Cu-rich precipitation,and even the activation energy by calculation.The results confirmed that the Cu-rich phased precipitation in the Cu-bearing austenitic antibacterial stainless steel should be a thermal activation process controlled by Cu diffusion.All the materials analysis methods used in this study can be more simple and effective for application in R & D of the Cu-bearing antibacterial stainless steels.
文摘The major phases in the Cu-rich alloys containing Co,Cr and Si are α-Cu(a solid solution of Co,Cr and Si in Cu),χ-phase(Co_5Cr_3Si_2)and Co_2Si.In comparison with reference sample,it has been detected that the crystal structure of Co_5Cr_3Si_2 is cubic,α-Mn type with a=0.8694 nm.The melting temperature of χ-phase and the alloy are higher than that of the pure Cu,namely,1535 and 1389 K respectively.During ageing treatment,the Co_2Si phase precipitates out from α-Cu and χ-phase simultaneously,but the hardening effect is mainly contributed by the precipitation from α-Cu.
基金Project(2012CB619503)supported by the Nation Basic Research Program of ChinaProject(2013AA031001)supported by the National High Technology Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science&Technology Cooperation Program of China
文摘Different proportions of commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy (HEA) powder were ball-milled (BM) for different time. The powder was consolidated by hot extrusion method. The microstructures of the milled powder and bulk alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties of the extruded alloy were examined by mechanical testing machine. The results show that after BM, the particle size and microstructures of the mixed alloy powder change obviously. After 48 h BM, the average size of mixed powder is about 30 nm, and then after hot extrusion, the average size of grains reaches about 70 rim. The compressive strength of the extruded alloy reaches 710 MPa under certain conditions of milling time and composition. As a result of the identification of the nano-/micro-strueture-property relationship of the samples, such high strength is attributed mainly to the nanocrystalline grains of a(Al) and nanoscaled FeNiCrCoAl3 particles, and the fine secondary phase of Al2Cu and Fe-rich phases.
基金financially supported by the National Natural Science Foundation of China(No.51974184)the National MCF Energy R&D Program of China(No.2018YFE0306102)。
文摘The mechanical properties of an austenite-based Fe-Mn-Al-C lightweight steel were improved by co-precipitation of nanoscale Cu-rich and κ-carbide particles.The Fe-28Mn-9Al-0.8C-(0,3)Cu (wt.%) strips were near-rapidly solidified and annealed in the temperature range from 500 ℃ to 700 ℃.The microstructure evolution and mechanical properties of the steel under different annealing processes were studied.Microstructural analysis reveals that nanoscale κ-carbides and Cu-rich particles precipitate in the austenite and ferrite of the steel in this annealing temperature range.Co-precipitation of nanoscale Cu-rich particles and κ-carbides provides an obvious increment in the yield strength.At the annealing temperature of 600 ℃,both the yield strength and ultimate tensile strength of Fe-28Mn-9Al-0.8C-3Cu (wt.%) steel strip are the highest.The total elongation is 25%,which is obviously higher than that of Cu-free steel strips,for the addition of Cu reduces the large sized κ-carbides precipitated along austenite/ferrite interfaces.When the annealing temperature rises to 700 ℃,the strength and ductility of the two steel strips deteriorate due to the formation of massive intergranular κ-carbides precipitated along austenite/ferrite interfaces.It can be concluded that a proper co-precipitation of Cu-rich particles and κ-carbides would improve the properties of austenite-based Fe-Mn-Al-C steel.
基金supported by National Key Research and Development Program of China (No. 2021 YFB3701000)the National Natural Science Foundation of China (Nos. U2167213 and 51971053)+1 种基金the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (Nos. 2019-2021QNRC001, 20192021QNRC002, and 2019-2021QNRC003)and the Fundamental Research Funds for the Central Universities (No. N2202020)
文摘A novel low-cost Mg-Al-Ca-Zn-Mn-based alloy was developed to simultaneously improve its strength and ductility.The high yield strength of 411 MPa and the high elongation to failure of~8.9%have been achieved in the as-extruded Mg-1.3Al-1.2Ca-0.5Zn-0.6Mn(wt%)sample.Microstructure characterizations showed that the high strength is mainly associated with the ultra-fined dynamically recrystallized(DRXed)grains.Moreover,high-density dislocations in the un-DRXed region and nano-precipitates are distributed among theα-Mg matrix.The high ductility property can be ascribed to the high volume fraction of DRXed grains with a much randomized texture,as well as the formations of high-density subgrains in the un-DRXed grain regions.
基金Item Sponsored by National Natural Science Foundation of China (50361001)
文摘Strengthening due to precipitation of Cu in the a-Fe matrix is an important phenomenon utilized in the design of HSLA steels. In the present work, the microstructure of supersaturated solid solution in Fe-1.18%Cu binary alloy was investigated by means of high resolution electron microscopy. The results indicated that the solid solution was heterogeneous, there were lots of Cu atom clusters, which consisted of diffractive stripe microstructure similar to twin crystal. Orientation deviation was observed between two (110)o planes in diffractive stripes, which results in light and shade contrast. Furthermore, formation mechanisms of the nanometre stripe microstructure were discussed in terms of the interaction of Cu and Fe atoms in the Fe-Cu binary alloys.
文摘Microstructure evolution in neutron irradiated Reactor Pressure Vessel (RPV) steels was experimentally simulated through an improved degradation procedure in this study. The degradation procedure includes austenitizing at 1 150℃ and water quench, deformation 10% and 30% respectively, and then thermal aging at 500℃ for different period of time. The microstructure of the specimens was analyzed in details using transmission electron microscopy (TEM). The micro-hardness test results showed that all the hardness curves of undeformed, 10% pre-deformed and 30% pre-deformed specimens have two micro-hardness peaks with the first peak value corresponding to different thermal aging time of 1 hour, 5 hours and 10 hours, respectively. It was revealed that the hardness curves were influenced by the precipitation of Cu-rich precipitates (CRPs) and carbides, deposition of martensite and work hardening.
基金supported by National Key Research and Development Program of China(Grant Nos.2018YFD1000800 and 2019YFD1000300)National Natural Science Foundation of China(Grant No.31872158)Earmarked Fund for China Agriculture Research System(Grant No.CAS-23).
文摘P450(cytochrome P450)is a supergene family,which is involved in various metabolic pathways in plants.Based on previous study,we found some of cucumber P450 mRNAs were systemic mobile in cucumber/pumpkin grafts.However,the reason that why P450 mRNAs were endorsed as signaling,and what specific motif(s)did they harbored is not clear yet.Here,we first identified 221 CsaP450 genes in cucumber genomewide level.Combining with graft-transmissiblemRNAs datasets in cucumber,we elucidated 15mobile-CsaP450-coding genes,of which 5 and 10 belonged to A-type and non-A type respectively.Compared with Arabidopsis and pumpkin(Cucubit moschata)graft-induced-transmissible P450 mRNAs,a phylogenetic treewas constructed and divided into eight clans by usingmultiple-sequence alignment.Gene ontology(GO)enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG)annotations indicated that the expression patterns of the mobile-mRNA-coding CsaP450 genes in different tissues of cucumber was specifically enriched in oxidoreductase activity and secondary metabolic pathways.The structures and motifs of these 15 mobile-mRNA-coding CsaP450 genes and their types of regulatory elements told that the proportion of CU-rich motifs was higher than nonmobile-mRNA-coding CsaP450 genes.The integrated analysis of mobility direction and mRNA abundance of 15 mobilemRNA-coding CsaP450 genes allowed to conclude that there was rarely relationship between them.The study provided a new insight into the relationship between the motifs and functional characterization of mobile-mRNA-coding P450 genes of cucumber in genome-wide levels.
文摘Experiments conducted to determine the effect of copper addition on the machinability of plastic mold steel, 4Cr16Mo, were presented. The machinability of mold steel 4Cr16Mo was visibly improved by adding Cu. The top wear of 4Cr16Mo with copper was less than that without copper. The Cu-rich phase had the effect of a lubricant and the heat conductivity, which reduced cutting-tool wear, improved machinability, and increased the service life of the cutting-tool. Increasing of copper addition decreased the hot-working character of 4Cr16Mo. The optimal hot-working parameters for 4Cr16Mo with copper were determined by the tensile test and the compression test. The rate of deformation should be adopted as 0.6 s-1. The heating-up temperature, initial forging temperature, and terminal forging temperature were 1200℃, 1150℃, and 950℃, respectively.
基金Funded by the Natural Science Foundation of China(No.51801140)the Fundamental Research Funds for the Central Universities(No.WUT3120619103)。
文摘Fe-12Cr-2.5W-x Si-0.4Ti-0.3Y_(2)O_(3)alloys were fabricated by mechanical alloying and vacuum sintering.The effect of sintering temperature and Si content on the microstructure and properties of the alloy was investigated systematically.The experimental results show that the relative density and tensile strength of the alloy were increased with the elevating of sintering temperature and Si content within a certain range.The alloy with 1wt%Si sintered at 1350℃exhibited superior properties,and the relative density and tensile strength were 96.8%and 692.7 MPa,respectively.HAADF and EDAX analysis of nano-precipitation in the matrix indicated that Si could combine with Y,Ti,and O in the sintering process,which was uniformly distributed with the size of 10 nm.Portion of Y_(2)O_(3)had not completely dissolved in the milling process,which was retained in the matrix of the alloy.
基金supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province (SJKY19_0460)the National Natural Science Foundation of China (Grant No.51979099 & 51774109)+2 种基金Natural Science Foundation of Jiangsu Province of China (Grant No.BK20191303)The Key Research and Development Project of Jiangsu Province of China (Grant No.BE2017148)Postgraduate Education Reform Project of Jiangsu Province (JGLX19_027)。
文摘The effect of adding a small amount of Ag on the microstructure evolution and superplastic properties of Mg-Y-Er-Zn(WEZ612) alloys was systematically studied.The basal texture of the refined WEZ612 alloy produced by equal channel angular pressing was altered to a non-basal structure upon the addition of Ag.Ag addition also refined the grain size and promoted the formation of a large number of nano-14H-long period stacking ordered phases.Using high-resolution transmission electron microscopy,many nano-precipitated phases were detected on the basal plane of the Mg-Y-Er-Zn-1Ag(WEZ612-1Ag) alloy,The nano-precipitated phases on the basal plane improved the thermal stability of the alloy,lowered the deformation activation energy(Q),and improved the stress sensitivity index(m).At 523 K with a strain rate of 10^(-2) s^(-1),the Q value of WEZ612 was higher than that of WEZ612-1Ag(299.14 and 128.5 kJ mol^(-1),respectively).In contrast,the m value of the WEZ612 alloy(0.16) was lower than that of the WEZ612-1Ag alloy(0.46).At 623 K with a tensile rate of 10^(-2) s^(-1),the WEZ612 and WEZ612-1Ag alloys were elongated by 182% and 495%,respectively,with the latter exhibiting high-strain-rate and low-temperature superplasticity.The improved superplasticity of the WEZ612-1Ag alloy is attributed to the nano-precipitated phases,which effectively limit the cavity extension during superplastic deformation.
文摘A study was conducted on the formation of a Cu-rich phase at the scale/steel interface of Cu-containing steel by high-temperature oxidation with varying amounts of A1 and Ni. Both A1 and Ni were found to help decrease the amount of the Cu-rich phase at the interface. Analysis of the effects by these elements was conducted in terms of the melting point of the Cu-rich phase, the solid solubility of Cu in austenite, the rate of oxidation, and the amount of Cu-rich phase occlusions in scales. Because of selective oxidation,in which A1 and Ni are oxidized more and less preferentially than Fe, respectively, A1 was weakly concentrated at the interface whereas Ni was more heavily concentrated in it. Thus, A1 exerted no effect on the melting point of the Cu-rich phase, whereas Ni raised its melting point. A1, which was applied at contents of less than 2.0%, decreased the solubility of Cu in austenite but this effect weakened at the interface during oxidation. By contrast,Ni increased the solubility of Cu, and this effect was strengthened with oxidation. Both A1 and Ni promoted internal oxidation and the formation of occlusions.
基金This work was supported financially by the National Key Research and Development Plan(No.2016YFB0301103)the National Natural Science Foundation of China(Nos.51771109 and 51631006)the Shanghai Rising-Star Program(No.16QB1402800).
文摘To resolve the strength-ductility trade-off problem for high-strength Mg alloys,we prepared a high performance Mg-8Gd-3Y-0.5 Zr(wt%)alloy with yield strength of 371 MPa,ultimate tensile strength of 419MPa and elongation of 15.8%.The processing route involves extrusion,pre-deformation and aging,which leads to a bimodal structure and nano-precipitates.Back-stress originated from the deformationincompatibility in the bimodal-structure alloy can improve ductility.In addition,dislocation density in coarse grains increased during the pre-deformation strain of 2%,and the dislocations in coarse grains can promote the formation of chain-like nano-precipitates during aging treatment.The chain-like nanoprecipitates can act as barriers for dislocations slip and the existing mobile dislocations enable good ductility.
基金Sponsored by National Science and Technology Support Plan of China (2007BAE51B02)
文摘The precipitation characteristics and effect on strengthening mechanism of Cu-rich phases during short-time and long-time aging for Super 304H steels with different Cu content were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that the size of Cu-rich phase particles increases, the interspace of Cu-rich phase particles decreases and the density of Curich phases increases with the increase of Cu content during short-time aging (approximately 800 h) at 650℃ for Super 304H steels. During long-time aging (more than 2 000 h) at 650 ℃, Cu-rich phase precipitates sufficiently and the strengthening effect of Cu-rich phase is preferable in Super 304H steel containing Cu of 4%. The strengthening effect of Cu-rich phase in Super 304H steels containing Cu of 2.2% or 5% is weaker than that with Cu of 4% during long-time aging (more than 2 000 h).
基金supported by the National Natural Science Foundation of China (No.50931003)
文摘The Cu-containing austenitic heat-resistant steel 18Cr9Ni3CuNbN, which is being used as superheater and reheater tube material for modern ultra-super-critical (USC) power plants all over the world, has been investigated at 650 ℃ long time aging till 10 000 h. SEM, TEM and 3DAP (three dimensional atom probe) have been used to follow microstructural changes with mechanical property variations. Experimental results show that Cu-rich phase and MX precipitate in the grains as well as M 23 C 6 precipitates at grain boundaries are the main precipitation strengthening phases in this steel. Among them Cu-rich phase is the most important strengthening phase. Homogeneous distribution of very fine nano-size Cu-rich phase has been formed at very early stage of 650 ℃ aging (less than 1 h). Cu atoms gradually concentrate to Cu-rich particles and the other elements (such as Fe, Cr, Ni etc) diffuse away from Curich particles to γ-matrix with the increasing of aging time at 650 ? C. The growth rate of Cu-rich phase at 650 ℃ long time aging is very slow and the average diameters of Cu-rich phase have been determined by TEM method. Cu-rich phase keeps in about 30 nm till 650 ℃ aging for 10 000 h. It shows that nano-size Cu-rich phase precipitation strengthening can be kept for long time aging at 650 ℃ because of its excellent stability at high temperatures. According to structure stability study and mechanical properties determination results the Cu-rich phase precipitation sequence and its strengthening mechanism model have been suggested and discussed.