Zeolite X was synthesized by a two-step hydrothermal method using natural stellerite zeolite as the silicon seed,and its adsorption performance for Cd^(2+)and Ni^(2+)ions was experimentally and comprehensively investi...Zeolite X was synthesized by a two-step hydrothermal method using natural stellerite zeolite as the silicon seed,and its adsorption performance for Cd^(2+)and Ni^(2+)ions was experimentally and comprehensively investigated.The effects of p H,zeolite X dosage,contact time,and temperature on adsorption performance for Cd^(2+)and Ni^(2+)ions over were studied.The adsorption process was endothermic and spontaneous,and followed the pseudo-second-order kinetic and the Langmuir isotherm models.The maximum adsorption capacitiesfor Cd^(2+)and Ni^(2+)ions at 298 K were 173.553 and 75.897 mg.g-1,respectively.Ion exchange and precipitation were the principal mechanisms for the removal of Cd^(2+)ions from aqueous solutions by zeolite X,followed by electrostatic adsorption.Ion exchange was the principal mechanisms for the removal of Ni^(2+)ions from aqueous solutions by zeolite X,followed by electrostatic adsorption and precipitation.The zeolite X converted from stellerite zeolite has a low n(Si/Al),abundant hydroxyl groups,and high crystallinity and purity,imparting a good adsorption performance for Cd^(2+)and Ni^(2+)ions.This study suggests that zeolite X converted from stellerite zeolite could be a useful environmentally-friendly and effective tool for the removal of Cd^(2+)and Ni^(2+)ions from aqueous solutions.展开更多
Y and P zeolites were synthesized hydrothermally from natural stellerite under different conditions and were characterized via XRD and FT IR. The results show that the higher crystallinity of Y zeolite can be obtained...Y and P zeolites were synthesized hydrothermally from natural stellerite under different conditions and were characterized via XRD and FT IR. The results show that the higher crystallinity of Y zeolite can be obtained in hydrothermal system with low alkalinity, low Ca 2+ /Na + ratio, and high SiO 2/Al 2O 3 ratio. The lattice space of the samples decreases as crystallization time increases. P Zeolite is prompted under condition of higher alkalinity and higher Ca 2+ /Na + ratio. The intensity and number of bands in the range of 400?cm -1 ~ 900?cm -1 increases with reaction time. Bands at 680?cm -1 , 760?cm -1 and 860?cm -1 corresponding to Y zeolite appear during the crystallization stage. Most of these bands shift to higher wavenumbers when SiO 2/Al 2O 3 ratio increases generally. In the hydrothermal system with reverse condition above, bands at 600?cm -1 , 420?cm -1 ~ 470?cm -1 hardly change as the crystallization time increases and the main crystal phase of P zeolite is obtained.展开更多
The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and ...The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Nirich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi-MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu-Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.展开更多
Cu precipitation behaviors in two Cu-bearing austenitic antibacterial stainless steels,type 304 and type 317L,were systematically studied by using relatively simple methods for materials analysis,including micro-hardn...Cu precipitation behaviors in two Cu-bearing austenitic antibacterial stainless steels,type 304 and type 317L,were systematically studied by using relatively simple methods for materials analysis,including micro-hardness,electrical resistivity,electrochemical impedance spectroscopy,X-ray diffraction and differential scanning calorimetry.The results indicated that after aging at elevated temperature,the micro-hardness, electrical resistivity,electrochemical impedance and lattice constant of the steel were all varied at different degrees due to the precipitation and growth of Cu-rich phases.The results also showed that the heat evolution during the process of Cu precipitation could be sensitively detected by means of differential scanning calorimetry,obtainning the starting temperature,peak temperature,peak area of the Cu-rich precipitation,and even the activation energy by calculation.The results confirmed that the Cu-rich phased precipitation in the Cu-bearing austenitic antibacterial stainless steel should be a thermal activation process controlled by Cu diffusion.All the materials analysis methods used in this study can be more simple and effective for application in R & D of the Cu-bearing antibacterial stainless steels.展开更多
The major phases in the Cu-rich alloys containing Co,Cr and Si are α-Cu(a solid solution of Co,Cr and Si in Cu),χ-phase(Co_5Cr_3Si_2)and Co_2Si.In comparison with reference sample,it has been detected that the cryst...The major phases in the Cu-rich alloys containing Co,Cr and Si are α-Cu(a solid solution of Co,Cr and Si in Cu),χ-phase(Co_5Cr_3Si_2)and Co_2Si.In comparison with reference sample,it has been detected that the crystal structure of Co_5Cr_3Si_2 is cubic,α-Mn type with a=0.8694 nm.The melting temperature of χ-phase and the alloy are higher than that of the pure Cu,namely,1535 and 1389 K respectively.During ageing treatment,the Co_2Si phase precipitates out from α-Cu and χ-phase simultaneously,but the hardening effect is mainly contributed by the precipitation from α-Cu.展开更多
首次以天然红辉沸石水热合成了 Y 型、P 型分子筛,以 IR 研究了水热合成体系中分子筛结构的演变及晶相分布规律。研究表明,在高 H_2O/Na_2O、低Ca^(2+)/Na^+体系中,主晶相为 Y 型分子筛,在低 H_2O/Na_2O、高 Ca^(2+)/Na^+体系中,主晶相...首次以天然红辉沸石水热合成了 Y 型、P 型分子筛,以 IR 研究了水热合成体系中分子筛结构的演变及晶相分布规律。研究表明,在高 H_2O/Na_2O、低Ca^(2+)/Na^+体系中,主晶相为 Y 型分子筛,在低 H_2O/Na_2O、高 Ca^(2+)/Na^+体系中,主晶相为 P 型分子筛。展开更多
基金supported by the National Natural Science Foundation of China(51564008,41662005)Natural Science Foundation of Guangxi Province(2019GXNSFBA245083)。
文摘Zeolite X was synthesized by a two-step hydrothermal method using natural stellerite zeolite as the silicon seed,and its adsorption performance for Cd^(2+)and Ni^(2+)ions was experimentally and comprehensively investigated.The effects of p H,zeolite X dosage,contact time,and temperature on adsorption performance for Cd^(2+)and Ni^(2+)ions over were studied.The adsorption process was endothermic and spontaneous,and followed the pseudo-second-order kinetic and the Langmuir isotherm models.The maximum adsorption capacitiesfor Cd^(2+)and Ni^(2+)ions at 298 K were 173.553 and 75.897 mg.g-1,respectively.Ion exchange and precipitation were the principal mechanisms for the removal of Cd^(2+)ions from aqueous solutions by zeolite X,followed by electrostatic adsorption.Ion exchange was the principal mechanisms for the removal of Ni^(2+)ions from aqueous solutions by zeolite X,followed by electrostatic adsorption and precipitation.The zeolite X converted from stellerite zeolite has a low n(Si/Al),abundant hydroxyl groups,and high crystallinity and purity,imparting a good adsorption performance for Cd^(2+)and Ni^(2+)ions.This study suggests that zeolite X converted from stellerite zeolite could be a useful environmentally-friendly and effective tool for the removal of Cd^(2+)and Ni^(2+)ions from aqueous solutions.
文摘Y and P zeolites were synthesized hydrothermally from natural stellerite under different conditions and were characterized via XRD and FT IR. The results show that the higher crystallinity of Y zeolite can be obtained in hydrothermal system with low alkalinity, low Ca 2+ /Na + ratio, and high SiO 2/Al 2O 3 ratio. The lattice space of the samples decreases as crystallization time increases. P Zeolite is prompted under condition of higher alkalinity and higher Ca 2+ /Na + ratio. The intensity and number of bands in the range of 400?cm -1 ~ 900?cm -1 increases with reaction time. Bands at 680?cm -1 , 760?cm -1 and 860?cm -1 corresponding to Y zeolite appear during the crystallization stage. Most of these bands shift to higher wavenumbers when SiO 2/Al 2O 3 ratio increases generally. In the hydrothermal system with reverse condition above, bands at 600?cm -1 , 420?cm -1 ~ 470?cm -1 hardly change as the crystallization time increases and the main crystal phase of P zeolite is obtained.
基金supported by the National Science and Technology Support Project of China (No.2006BAB01B08)
文摘The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Nirich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi-MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu-Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.
文摘Cu precipitation behaviors in two Cu-bearing austenitic antibacterial stainless steels,type 304 and type 317L,were systematically studied by using relatively simple methods for materials analysis,including micro-hardness,electrical resistivity,electrochemical impedance spectroscopy,X-ray diffraction and differential scanning calorimetry.The results indicated that after aging at elevated temperature,the micro-hardness, electrical resistivity,electrochemical impedance and lattice constant of the steel were all varied at different degrees due to the precipitation and growth of Cu-rich phases.The results also showed that the heat evolution during the process of Cu precipitation could be sensitively detected by means of differential scanning calorimetry,obtainning the starting temperature,peak temperature,peak area of the Cu-rich precipitation,and even the activation energy by calculation.The results confirmed that the Cu-rich phased precipitation in the Cu-bearing austenitic antibacterial stainless steel should be a thermal activation process controlled by Cu diffusion.All the materials analysis methods used in this study can be more simple and effective for application in R & D of the Cu-bearing antibacterial stainless steels.
文摘The major phases in the Cu-rich alloys containing Co,Cr and Si are α-Cu(a solid solution of Co,Cr and Si in Cu),χ-phase(Co_5Cr_3Si_2)and Co_2Si.In comparison with reference sample,it has been detected that the crystal structure of Co_5Cr_3Si_2 is cubic,α-Mn type with a=0.8694 nm.The melting temperature of χ-phase and the alloy are higher than that of the pure Cu,namely,1535 and 1389 K respectively.During ageing treatment,the Co_2Si phase precipitates out from α-Cu and χ-phase simultaneously,but the hardening effect is mainly contributed by the precipitation from α-Cu.
文摘首次以天然红辉沸石水热合成了 Y 型、P 型分子筛,以 IR 研究了水热合成体系中分子筛结构的演变及晶相分布规律。研究表明,在高 H_2O/Na_2O、低Ca^(2+)/Na^+体系中,主晶相为 Y 型分子筛,在低 H_2O/Na_2O、高 Ca^(2+)/Na^+体系中,主晶相为 P 型分子筛。