期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Interfaces of high-efficiency kesterite Cu_2ZnSnS(e)_4 thin film solar cells 被引量:1
1
作者 高守帅 姜振武 +4 位作者 武莉 敖建平 曾玉 孙云 张毅 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期2-18,共17页
Cu2ZnSnS(e)4 (CZTS(e)) solar cells have attracted much attention due to the elemental abundance and the non- toxicity. However, the record efficiency of 12.6% for CuzZnSn(S,Se)4 (CZTSSe) solar cells is much ... Cu2ZnSnS(e)4 (CZTS(e)) solar cells have attracted much attention due to the elemental abundance and the non- toxicity. However, the record efficiency of 12.6% for CuzZnSn(S,Se)4 (CZTSSe) solar cells is much lower than that of Cu(In,Ga)See (CIGS) solar cells. One crucial reason is the recombination at interfaces. In recent years, large amount inves- tigations have been done to analyze the interfacial problems and improve the interfacial properties via a variety of methods. This paper gives a review of progresses on interfaces of CZTS(e) solar cells, including: (i) the band alignment optimization at buffer/CZTS(e) interface, (ii) tailoring the thickness of MoS(e)2 interfacial layers between CZTS(e) absorber and Mo back contact, (iii) the passivation of rear interface, (iv) the passivation of front interface, and (v) the etching of secondary phases. 展开更多
关键词 cu2znsns4 solar cells KESTERITE interface PASSIVATION
下载PDF
First-principles study on the alkali chalcogenide secondary compounds in Cu(In,Ga)Se_2 and Cu_2ZnSn(S,Se)_4 thin film solar cells 被引量:1
2
作者 Xian Zhang Dan Han +2 位作者 Shiyou Chen Chungang Duan Junhao Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1140-1150,共11页
The beneficial effect of the alkali metals such as Na and K on the Cu(In.Ga)Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been extensively investigated in the past two decades, however, in most of the... The beneficial effect of the alkali metals such as Na and K on the Cu(In.Ga)Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been extensively investigated in the past two decades, however, in most of the studies the alkali metals were treated as dopants. Several recent studies have showed that the alkali metals may not only act as dopants but also form secondary phases in the absorber layer or on the surfaces of the films. Using the first-principles calculations, we screened out the most probable secondary phases of Na and K in CIGS and CZTSSe, and studied their electronic structures and optical properties. We found that all these alkali chalcogenide compounds have larger band gaps and lower VBM levels than CIGS and CZTSSe, because the existence of strong p-d coupling in CIS and CZTS pushes the valence band maximum (VBM) level up and reduces the band-gaps, while there is no such p-d coupling in these alkali chalcogenides. This band alignment repels the photo-generated holes from the secondary phases and prevents the electron-hole recombination. Moreover, the study on the optical properties of the secondary phases showed that the absorption coefficients of these alkali chalcogenides are much lower than those of CIGS and CZTSSe in the energy range of 0-3.4eV, which means that the alkali chalcogenides may not influence the absorption of solar light. Since the alkali metal dopants can passivate the grain boundaries and increase the hole carrier concentration, and meanwhile their related secondary phases have innocuous effect on the optical absorption and band alignment, we can understand why the alkali metal dopants can improve the CIGS and CZTSSe solar cell performance. 展开更多
关键词 Cu(In Ga)Se2 and cu2ZnSn(S Se)4 thin film solar cells First-principles calculations Secondary phases Alkali dopants
下载PDF
Cu2ZnSn(S,Se)4 thin film solar cells fabricated with benign solvents
3
作者 Cheng ZHANG Jie ZHONG Jiang TANG 《Frontiers of Optoelectronics》 CSCD 2015年第3期252-268,共17页
Cu2ZnSn(S,Se)4 (CZTSSe) is considered as the promising absorbing layer materials for solar cells due to its earth-abundant constituents and excellent semiconductor properties. Through solution-processing, such as ... Cu2ZnSn(S,Se)4 (CZTSSe) is considered as the promising absorbing layer materials for solar cells due to its earth-abundant constituents and excellent semiconductor properties. Through solution-processing, such as various printing methods, the fabrication of high perfor- mance CZTSSe solar cell could be applied to mass production with extremely low manufacturing cost and high yield speed. To better fulfill this goal, environmentalfriendly inks/solutions are optimum for further reducing the capital investment on instrument, personnel and environmental safety. In this review, we summarized the recent development of CZTSSe thin films solar cells fabricated with benign solvents, such as water and ethanol. The disperse system can be classified to the true solution (consisting of molecules) and the colloidal suspension (consisting ofnanoparticles).Three strategies for stabilization (i.e., physical method, chemical capping and self- stabilization) are proposed to prepare homogeneous and stable colloidal nanoinks. The one-pot self-stabilization method stands as an optimum route for preparing benign inks for its low impurity involvement and simple procedure. As-prepared CZTSSe inks would be deposited onto substrates to form thin films through spin-coating, spraying, electrodeposition or successive ionic layer adsorption and reaction (SILAR) method, followed by annealing in a chalcogen (S- or Se-containing) atmosphere to fabricate absorber. The efficiency of CZTSSe solar cell fabricated with benign solvents can also be enhanced by constituent adjustments, doping, surface treatments and blocking layers modifications, etc., and the deeper research will promise it a comparable performance to the non- benign CZTSSe systems. 展开更多
关键词 cu2ZnSn(S Se)4 (CZTSSe) solar cell benignsolvents metal chalcogenide complexes (MCCs) solutionprocessing
原文传递
Lithium-assisted synergistic engineering of charge transport both in GBs and GI for Ag-substituted Cu2ZnSn(S,Se)4 solar cells 被引量:2
4
作者 Xiangyun Zhao Xiaohuan Chang +6 位作者 Dongxing Kou Wenhui Zhou Zhengji Zhou Qingwen Tian Shengjie Yuan Yafang Qi Sixin Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期9-15,共7页
Although silver(Ag) substitution offers several benefits in eliminating bulk defects and facilitating interface type inversion for Cu2ZnSn(S,Se)4(CZTSSe) photovoltaic(PV) technology, its further development is still h... Although silver(Ag) substitution offers several benefits in eliminating bulk defects and facilitating interface type inversion for Cu2ZnSn(S,Se)4(CZTSSe) photovoltaic(PV) technology, its further development is still hindered by the fairly low electrical conductivity due to the significant decrease of acceptors amount.In this work, a versatile Li–Ag co-doping strategy is demonstrated to mitigate the poor electrical conductivity arising from Ag through direct incorporating Li via postdeposition treatment(PDT) on top of the Ag-substituted CZTSSe absorber. Depth characterizations demonstrate that Li incorporation increases ptype carrier concentration, improves the carrier collection within the bulk, reduces the defects energy level as well as inverts the electric field polarity at grain boundaries(GBs) for Ag-substituted CZTSSe system. Benefiting from this lithium-assisted complex engineering of electrical performance both in grain interior(GI) and GBs, the power conversion efficiency(PCE) is finally increased from 9.21% to 10.29%. This systematic study represents an effective way to overcome the challenges encountered in Ag substitution,and these findings support a new aspect that the synergistic effects of double cation dopant will further pave the way for the development of high efficiency kesterite PV technology. 展开更多
关键词 cu2ZnSn(S Se)4 thin film solar cell Ag substitution Alkali doping POST-TREATMENT
下载PDF
Theoretical study on the kesterite solar cells based on Cu_2ZnSn(S,Se)_4 and related photovoltaic semiconductors
5
作者 刘定荣 韩丹 +4 位作者 黄梦麟 张弦 张涛 戴称民 陈时友 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期37-48,共12页
The kesterite thin film solar cells based on the quaternary Cu2ZnSnS4 and Cu2ZnSnSe4 and their alloys Cu2ZnSn(S,Se)4 have been considered as environment-friendly and non-toxic alternatives to the currently commercia... The kesterite thin film solar cells based on the quaternary Cu2ZnSnS4 and Cu2ZnSnSe4 and their alloys Cu2ZnSn(S,Se)4 have been considered as environment-friendly and non-toxic alternatives to the currently commercialized CdTe and Cu(In,Ga)Se2 thin film solar cells. From the theoretical point of view, we will review how the group I2-II-IV-VI4 quaternary compound semiconductors are derived from the binary CdTe and the ternary CuInSe2 or CuGaSe2 through the cation mutation, and how the crystal structure and electronic band structure evolve as the component elements change. The increased structural and chemical freedom in these quaternary semiconductors opens up new possibility for the tailoring of material properties and design of new light-absorber semiconductors. However, the increased freedom also makes the development of high-efficiency solar cells more challenging because much more intrinsic point defects, secondary phases, surfaces, and grain-boundaries can exist in the thin films and influence the photovoltaic performance in a way different from that in the conventional CdTe and Cu(In,Ga)Se2 solar cells. The experimental characterization of the properties of defects, secondary phase, and grain-boundaries is currently not very efficient and direct, especially for these quaternary compounds. First-principles calculations have been successfully used in the past decade for studying these properties. Here we will review the theoretical progress in the study of the mixed-cation and mixed-anion alloys of the group I2-II-IV- VI4 semiconductors, defects, alkaline dopants, and grain boundaries, which provided very important information for the optimization of the kesterite solar cell performance. 展开更多
关键词 kesterite thin film solar cells cu2znsns4 and cu2ZnSnSe4 first-principles calculations defects and dopants
下载PDF
Surface defect ordered Cu_(2)ZnSn(S,Se)_(4) solar cells with efficiency over 12% via manipulating local substitution 被引量:6
6
作者 Changcheng Cui Dongxing Kou +5 位作者 Wenhui Zhou Zhengji Zhou Shengjie Yuan Yafang Qi Zhi Zheng Sixin Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期555-562,共8页
The environmentally friendly Cu_(2)ZnSn(S,Se)_(4)(CZTSSe) compounds are promising direct bandgap materials for application in thin film solar cells, but the spontaneous surface defects disordering would lead to large ... The environmentally friendly Cu_(2)ZnSn(S,Se)_(4)(CZTSSe) compounds are promising direct bandgap materials for application in thin film solar cells, but the spontaneous surface defects disordering would lead to large open-circuit voltage deficit(V_(oc,deficit)) and significantly limit kesterite photovoltaics performance,primarily arising from the generated more recombination centers and insufficient p to n conversion at p-n junction. Herein, we establish a surface defects ordering structure in CZTSSe system via local substitution of Cu by Ag to suppress disordered Cu_(Zn) defects and generate benign n-type Zn_(Ag) donors. Taking advantage of the decreased annealing temperature of Ag F post deposition treatment(PDT), the high concentration of Ag incorporated into surface absorber facilitates the formation of surface ordered defect environment similar to that of efficient CIGS PV. The manipulation of highly doped surface structure could effectively reduce recombination centers, increase depletion region width and enlarge the band bending near p-n junction. As a result, the Ag F-PDT device finally achieves maximum efficiency of 12.34% with enhanced V_(oc) of 0.496 V. These results offer a new solution route in surface defects and energy-level engineering, and open the way to build up high quality p-n junction for future development of kesterite technology. 展开更多
关键词 KESTERITE Cu_(2)ZnSn(S Se)_(4)thin film solar cells Interface recombination Defect passivation Ag substitution
下载PDF
Precisely tuning Ge substitution for efficient solution-processed Cu_2ZnSn(S,Se)_4 solar cells 被引量:1
7
作者 王新收 寇东星 +4 位作者 周文辉 周正基 田庆文 孟月娜 武四新 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期116-120,共5页
The kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have yielded a prospective conversion efficiency among all thin- film photovoltaic technology. However, its further development is still hindered by the lower open... The kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have yielded a prospective conversion efficiency among all thin- film photovoltaic technology. However, its further development is still hindered by the lower open-circuit voltage (Voc), and the non-ideal bandgap of the absorber is an important factor affecting this issue. The substitution of Sn with Ge provides a unique ability to engineer the bandgap of the absorber film. Herein, a simple precursor solution approach was successfully developed to fabricate Cu2Zn(SnyGel_y)(SxSe~ x)4 (CZTGSSe) solar cells. By precisely adjusting the Ge content in a small range, the Voc and Jsc are enhanced simultaneously. Benefitting from the optimized bandgap and the maintained spike structure and light absorption, the 10% Ge/(Ge+Sn) content device with a bandgap of approximately 1.1 eV yields the highest efficiency of 9.36%. This further indicates that a precisely controlled Ge content could further improve the cell performance for efficient CZTGSSe solar cells. 展开更多
关键词 cu2ZnSn(S Se)4 solar cells Ge substitution bandgap
下载PDF
Synthesis of Cu_2ZnSnS_4 thin film from mixed solution of Cu_2SnS_3 nanoparticles and Zn ions
8
作者 Zheng-fu TONG Jia YANG +6 位作者 Chang YAN Meng-meng HAO Fang-yang LIU Liang-xing JIANG Yan-qing LAI Jie LI Ye-xiang LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2102-2108,共7页
The Cu2ZnSnS4 thin film was prepared by a facile solution method without vacuum environment and toxic substance. The formation mechanism of the film was studied by transmission electron microscopy (TEM), X-ray diffrac... The Cu2ZnSnS4 thin film was prepared by a facile solution method without vacuum environment and toxic substance. The formation mechanism of the film was studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and Raman scattering measurements. Through cyclic voltammetry and photo-electricity tests, the electrocatalytic activity of the prepared film as the counter electrode of dye-sensitizedsolar cell was also studied. The results show that the mixed precursor solution mainly consists of Cu2SnS3 nanoparticles and Zn ions.After 550 °C annealing process on the precursor film prepared from the mixed solution, Cu2ZnSnS4 thin film is obtained. Besides, itis found that the prepared Cu2ZnSnS4 thin film has the electrocatalytic activity toward the redox reaction of I3?/I? and the dye-sensitized solar cell with the prepared Cu2ZnSnS4 thin film as the counter electrode achieves the efficiency of 1.09%. 展开更多
关键词 cu2znsns4 thin film cu2SnS3 nanoparticle Zn ion ELECTROCATALYTIC dye-sensitized solar cells
下载PDF
具有陷光结构的半透明有机/铜锌锡硫硒四端串联太阳能电池
9
作者 周慧 郑巧 《光电子技术》 CAS 2024年第2期127-132,共6页
采用半透明有机太阳能电池和铜锌锡硫硒太阳能电池构成四端串联太阳能器件,并且利用表面具有微型金字塔结构的微米聚二甲基硅氧烷(PS-PDMS)膜的减反射作用来提高太阳能电池的效率。为了研究PS-PDMS的尺寸和放置位置对四端串联太阳能电... 采用半透明有机太阳能电池和铜锌锡硫硒太阳能电池构成四端串联太阳能器件,并且利用表面具有微型金字塔结构的微米聚二甲基硅氧烷(PS-PDMS)膜的减反射作用来提高太阳能电池的效率。为了研究PS-PDMS的尺寸和放置位置对四端串联太阳能电池性能的影响。制备了尺寸分别为18μm、14μm和9μm微型金字塔结构的PS-PDMS薄膜,比较了不同尺寸下PS-PDMS薄膜的减反射效果,发现9μm尺寸的PS-PDMS薄膜的减反射效果最好。将9μm尺寸的PS-PDMS薄膜用在四端串联太阳能电池的底电池时,四端串联太阳能电池具有最佳效率。最终获得了效率为11.26%的四端串联太阳能电池。与单结铜锌锡硫硒太阳能电池相比,四端串联太阳能电池的最佳效率提高了27.51%。 展开更多
关键词 半透明有机太阳能电池 铜锌锡硫硒太阳能电池 四端串联太阳能电池 陷光结构 减反射薄膜
下载PDF
Suppression of charge recombination by application of CueZnSnS4-graphene counter electrode to thin dye-sensitized solar cells 被引量:1
10
作者 Yan Li Huafei Guo +2 位作者 Xiuqin Wang Ningyi Yuan Jianning Ding 《Science Bulletin》 SCIE EI CAS CSCD 2016年第15期1221-1230,共10页
This paper proposes a new mechanism to explain the performance of thin dye-sensitized solar cells (DSSC). Near-stoichiometric flower-like Cu2ZnSnS4 (CZTS) microspheres with a high specific surface area was fabri- ... This paper proposes a new mechanism to explain the performance of thin dye-sensitized solar cells (DSSC). Near-stoichiometric flower-like Cu2ZnSnS4 (CZTS) microspheres with a high specific surface area was fabri- cated for use as the photocathode in a DSSC. To improve the extraction and transfer of electrons, graphene was added to the CZTS. A DSSC with a 10-gin TiO2 pho- toanode layer exhibited a slightly degraded efficiency with a CZTS-graphene photocathode, relative to a Pt counter electrode (CE). Nevertheless, when the thickness of the TiO2 photoanode was reduced to 2 lam, the efficiency of a DSSC with a CZTS-graphene photocathode was greater than that of a Pt-DSSC. It is speculated that, unlike the Pt CE, a CZTS-graphene photocathode not only collects electrons from an external circuit and catalyzes the reduction of the triiodide ions in the electrolyte, but also utilizes unabsorbed photons to produce photo-excited electrons and suppresses charge recombination, thus enhancing the performance of the cell. The use of narrowband gap p-type semiconductors as photocathodes offers a new means of fabricating thin dye-sensitized solar cells and effectively improving the cell performance. 展开更多
关键词 Dye-sensitized solar cell cu2znsns4-graphene Charge recombination
原文传递
阳离子掺杂措施优化铜锌锡硫硒电池性能的研究进展 被引量:1
11
作者 李姝雨 杨艳春 +2 位作者 王一鸣 霍虎 朱成军 《功能材料》 CAS CSCD 北大核心 2023年第4期4034-4044,共11页
铜锌锡硫硒(Cu_(2)ZnSn(S,Se)_(4),简称CZTSSe)薄膜太阳能电池因其组成元素地壳含量丰富,低毒环保等优点被科学家们认为是适合未来大面积发展的一类太阳能电池。当前,该类太阳能电池的效率一直受到吸收层中高的阳离子无序度和器件的低... 铜锌锡硫硒(Cu_(2)ZnSn(S,Se)_(4),简称CZTSSe)薄膜太阳能电池因其组成元素地壳含量丰富,低毒环保等优点被科学家们认为是适合未来大面积发展的一类太阳能电池。当前,该类太阳能电池的效率一直受到吸收层中高的阳离子无序度和器件的低开路电压的限制。为此,科学家们提出“阳离子掺杂措施”,即:通过引入其他阳离子,减少本身的阳离子无序度,从而提高电池器件的光电转换效率。事实也证明,阳离子掺杂措施在提升电池器件性能方面有着重大的意义。基于此,详细阐述了阳离子掺杂措施在优化铜锌锡硫硒电池器件性能方面的研究进展,包括:阳离子(如:钠、钾、锑)的额外添加和阳离子取代(如:锂/银取代铜、锰/镁/钡/镉取代锌、锗取代锡)措施,并得出结论:最有前景的阳离子是镉和锗离子,考虑到镉的有毒性,所以锗应该是优化CZTSSe电池性能方面最有应用前景的一种元素。 展开更多
关键词 薄膜太阳能电池 铜锌锡硫硒 阳离子掺杂 光电转换效率 反位缺陷 带隙
下载PDF
Cr应力缓释层对柔性Cu_(2)ZnSn(S,Se)_(4)薄膜太阳电池性能的影响
12
作者 陈春阳 唐正霞 +2 位作者 孙孪鸿 王威 赵毅杰 《半导体技术》 CAS 北大核心 2023年第6期482-487,共6页
柔性Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)薄膜太阳电池中的应力是阻碍其发展的一大瓶颈。采用磁控溅射法在柔性Ti衬底和Mo背电极之间引入不同厚度的Cr缓释层,研究其对CZTSSe薄膜应力的影响。结果表明,当Cr应力缓释层厚度为80 nm时,薄膜的结晶... 柔性Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)薄膜太阳电池中的应力是阻碍其发展的一大瓶颈。采用磁控溅射法在柔性Ti衬底和Mo背电极之间引入不同厚度的Cr缓释层,研究其对CZTSSe薄膜应力的影响。结果表明,当Cr应力缓释层厚度为80 nm时,薄膜的结晶质量最好,电池具有最佳的光电性能,相比没有Cr应力缓释层存在的情况,薄膜的残余应力从-7.15 GPa降低至-3.61 GPa,电池的光电转换效率(PCE)从2.89%提高至4.65%,增加了60.9%。Cr应力缓释层的引入不会影响CZTSSe薄膜的晶体结构,相反可有效提高薄膜的结晶质量,降低薄膜的残余应力,最终提高电池的光电性能。 展开更多
关键词 柔性Cu_(2)ZnSn(S Se)_(4)(CZTSSe)薄膜太阳电池 Cr应力缓释层 残余应力 光电转换效率(PCE) 结晶质量
下载PDF
Recent progress in defect engineering for kesterite solar cells
13
作者 Kaiwen Sun Jialiang Huang +2 位作者 Jianjun Li Chang Yan Xiaojing Hao 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第1期18-33,共16页
Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)thin film solar cells have been regarded as one of the most promising thin film photovoltaic technologies,offering a low-cost and environmentally friendly solar energy option.Alth... Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)thin film solar cells have been regarded as one of the most promising thin film photovoltaic technologies,offering a low-cost and environmentally friendly solar energy option.Although remarkable advances have been achieved in kesterite solar cells,the performance gap relative to mature thin film photovoltaic technologies such as CIGSe and Cd Te remains large.Significant open-circuit voltage(V_(OC))deficit has been recognized as the main limiting factor to performance improvement,with undesirable intrinsic defects being a key culprit contributing to the low V_(OC).To realize the promise inherent in kesterite CZTS to become an earth-abundant alternative to existing thin film photovoltaic technologies with comparable performance,significant research effort has been invested to tackle the challenging defect issues.In this review,recent progress and achievements relevant to engineering improvements to the defect properties of the semiconductor have been examined and summarized.Promising strategies include:(i)manipulating the synthesis process to obtain a desirable reaction pathway and chemical environment;(ii)introducing cation substitution to increase the ionic size difference and supress the related band tailing deep-level defects;(iii)applying post deposition treatment(PDT)with alkaline elements to passivate the detrimental defects.These advances obtained from work on kesterite solar cells may lead to future high performance from this material and may be further extended to other earth-abundant chalcogenide photovoltaic technologies. 展开更多
关键词 thin film solar cells kesterite solar cells Cu_(2)ZnSn(S Se)_(4)(CZTSSe CZTS) defect engineering
原文传递
Impact of Cu-rich growth on the Cu2ZnSnSe4 surface morphology and related solar cells behavior
14
作者 孙顶 葛阳 +7 位作者 张力 许盛之 陈泽 王宁 梁雪娇 魏长春 赵颖 张晓丹 《Journal of Semiconductors》 EI CAS CSCD 2016年第1期24-28,共5页
Inorderto study the influence ofCu-rich growth on the performance ofthe Cu2ZnSnSe4 (CZTSe)thin film solar cells, a multi-stage co-evaporation process is applied. The CZTSe films are grown at a lower substrate temper... Inorderto study the influence ofCu-rich growth on the performance ofthe Cu2ZnSnSe4 (CZTSe)thin film solar cells, a multi-stage co-evaporation process is applied. The CZTSe films are grown at a lower substrate temperature to reduce the existence time of Cux Sey at the first period caused by the volatility of SnSex. This study examines the surface morphology and device performance in Cu-rich growth and close-to-stoichiometric growth. Although the grain size of Cu-rich growth film increases a little, the difference was not dramatic as the results of CIGS reported previously. A model based on the grain boundary migration theory is proposed to explain the experimental results. The mechanisms of Cu-rich growth between CZTSe and CIGS might be different. 展开更多
关键词 cu2ZnSnSe4 CO-EVAPORATION Cu excess growth thin film solar cells
原文传递
Influence of selenium evaporation temperature on the structure of Cu_2ZnSnSe_4 thin film deposited by a co-evaporation process 被引量:3
15
作者 孙顶 许盛之 +7 位作者 张力 陈泽 葛阳 王宁 梁雪娇 魏长春 赵颖 张晓丹 《Journal of Semiconductors》 EI CAS CSCD 2015年第4期74-77,共4页
Cu2ZnSnSe4 (CZTSe) thin film solar cells have been fabricated using a one-step co-evaporation technique. The structural properties of polycrystalline CZTSe films deposited at different selenium evaporation temperatu... Cu2ZnSnSe4 (CZTSe) thin film solar cells have been fabricated using a one-step co-evaporation technique. The structural properties of polycrystalline CZTSe films deposited at different selenium evaporation temperatures (TSe) have been investigated using X-ray diffraction spectra, scanning electron microscopy, and atomic force microscopy. A relationship between TSe and the secondary phases deposited in the initial stage is established to explain the experimental observations. The Se flux is not necessarily increased too much to reduce Sn loss and the consumption of Se during fabrication could also be reduced. The best solar cell, with an efficiency of 2.32%, was obtained at a medium Tse of 230 ℃ (active area 0.34 cm2). 展开更多
关键词 cu2ZnSnSe4 one-step co-evaporation selenium flux thin film solar cells Sn loss
原文传递
Cu_2ZnSnS_4 thin films prepared by sulfurizing different multilayer metal precursors 被引量:5
16
作者 ZHANG Jun & SHAO LeXi School of Physical Science and Technology, Zhanjiang Normal University, Zhanjiang 524048, China 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第1期269-272,共4页
Cu2ZnSnS4 (CZTS) thin films were successfully fabricated on glass substrates by sulfurizing Cu-Sn-Zn multilayer precursors, which were deposited by ion beam sputtering and RF magnetron sputtering, respectively. The st... Cu2ZnSnS4 (CZTS) thin films were successfully fabricated on glass substrates by sulfurizing Cu-Sn-Zn multilayer precursors, which were deposited by ion beam sputtering and RF magnetron sputtering, respectively. The structural, electrical and optical properties of the prepared films under various processing conditions were investigated in detail. Results showed that the as-deposited CZTS thin films with the precursors by both ion beam sputtering and RF magnetron sputtering have a composition near stoichiometric. The crystallization of the samples, however, has a strong dependence on the atomic percent of constituents of the prepared CZTS films. A single phase stannite-type structure CZTS with a large absorption coefficient of 104/cm in the visible range could be obtained after sulfurization at 520℃ for 2 h. The samples relative to the RF magnetron sputtering showed a low resistivity of 0.073 ?cm and band gap energy of about 1.53 eV. The samples relative to the ion beam sputtering exhibited a resistivity of 0.36 Ωcm and the band gap energy is about 1.51 eV. 展开更多
关键词 Cu_2ZnSnS_4 solar cell thin film ion beams sputtering RF sputtering
原文传递
二价阳离子掺杂优化铜锌锡硫(硒)薄膜太阳能电池性能的研究进展
17
作者 赵鑫 杨艳春 +4 位作者 崔国楠 刘艳青 任俊婷 田晓 朱成军 《复合材料学报》 EI CAS CSCD 北大核心 2023年第11期6029-6042,共14页
阳离子掺杂措施被认为是调节优化铜锌锡硫硒薄膜(Cu_(2)ZnSn(S,Se)_(4),CZTS(Se))太阳能电池有效措施之一,其中,二价阳离子掺杂措施是研究最多、应用最广的。本文从阳离子取代和阳离子额外添加两个方面详细介绍了二价阳离子掺杂措施在优... 阳离子掺杂措施被认为是调节优化铜锌锡硫硒薄膜(Cu_(2)ZnSn(S,Se)_(4),CZTS(Se))太阳能电池有效措施之一,其中,二价阳离子掺杂措施是研究最多、应用最广的。本文从阳离子取代和阳离子额外添加两个方面详细介绍了二价阳离子掺杂措施在优化CZTS(Se)薄膜太阳能电池性能方面的研究进展,二价阳离子取代措施,如Cd^(2+)取代Zn^(2+)等,主要是可以有效降低CZTS(Se)薄膜太阳能电池吸收层的缺陷密度,提高结晶质量,解决吸收层和缓冲层之间界面能带偏移值较大的问题,从而减少电池器件的开路电压亏损,提高器件效率;二价阳离子的额外添加,如Co、Mn的额外添加,主要是优化薄膜的结晶性、帮助载流子的输运,提高吸收层薄膜的电学性能;最后,也总结两类阳离子掺杂措施的优缺点及应用前景。 展开更多
关键词 铜锌锡硫 铜锌锡硫硒 薄膜太阳能电池 二价阳离子的取代 二价阳离子的额外添加
原文传递
(Ag,Cu)_(2)ZnSn(S,Se)_(4)太阳能电池的制备及表征
18
作者 刘洪波 张雨涵 +4 位作者 王莉媛 韩淑怡 周天香 姜雨虹 杨景海 《吉林师范大学学报(自然科学版)》 2022年第2期25-29,共5页
采用简单的溶胶-凝胶法制备出高质量的(Ag,Cu)_(2)ZnSn(S,Se)_(4)(ACZTSSe)薄膜.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、紫外-可见分光光度计(UV-Vis)等研究了ACZTSSe薄膜的物理化学性质.实验结果表明,在Cu_(2)ZnSn(S,Se)_(4)(CZT... 采用简单的溶胶-凝胶法制备出高质量的(Ag,Cu)_(2)ZnSn(S,Se)_(4)(ACZTSSe)薄膜.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、紫外-可见分光光度计(UV-Vis)等研究了ACZTSSe薄膜的物理化学性质.实验结果表明,在Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)吸收层中掺杂Ag后薄膜可以获得较高的迁移率和光电转换效率(PCE).与CZTSSe太阳能电池相比,观察到8%-(Ag,Cu)_(2)ZnSn(S,Se)_(4)(8%-ACZTSSe)太阳能电池的开路电压(V_(oc))增加了100 mV,PCE也从2.31%增加到4.33%.因此,在CZTSSe层掺杂Ag不仅是一种可以获得具有较高的V_(oc)和PCE的CZTSSe基太阳能电池的方法,还是一种可以促进晶粒的生长、提高薄膜质量的途径. 展开更多
关键词 (Ag Cu)_(2)ZnSn(S Se)_(4) 薄膜 光电性能 太阳能电池 溶胶-凝胶
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部