Charge characteristics and Cu2+ adsorption-desorption of soils with variable charge (latosol) and permanent charge (brown soil) and the relationship between them were studied by means of back-titration and adsorption ...Charge characteristics and Cu2+ adsorption-desorption of soils with variable charge (latosol) and permanent charge (brown soil) and the relationship between them were studied by means of back-titration and adsorption equilibrium respectively. The amount of variable negative charge was much less in variable-charge soil than in permanent-charge soil and increased with the pH in the system, but the opposite trend occurred in the points of zero charge (PZCs). The amount of Cu2+ ions sorbed by permanent-charge soil was more than that by variable-charge soil and increased with the increase of Cu2+ concentration within a certain range in the equilibrium solution. The amount of Cu2+ ions desorbed with KC1 from permanent-charge soil was more than that from variable-charge soil, but the amount of Cu2+ ions desorbed with de-ionized water from permanent-charge soil was extremely low whereas there was still a certain amount of desorption from variable-charge soil. The increase of PZC of soils with variable or permanent charge varied with the increment of Cu2+ ions added. When the same amount of Cu2+ ions was added, the increments of PZC and variable negative surface charge of permanent-charge soil were different from those of variable-charge soil.展开更多
A new technique for studying the adsorption kinetics of heavy metals,Pb^2+ and Cu^2+,on variable charge surfaces was established with two selective electrodes and microcomputer control system.Feasibility of the techni...A new technique for studying the adsorption kinetics of heavy metals,Pb^2+ and Cu^2+,on variable charge surfaces was established with two selective electrodes and microcomputer control system.Feasibility of the technique,including interference of other ions (mainly Fe^3+ and Al^3+),response time of electrodes,and the pH range of testing,was studied.Comparision with the most widely used miscible displacement technique,which was considered insufficient in studying 30-minute rapid reactions,at present time showed that the new technique was more advantageous in testing in situ,easy to operate,and economic.展开更多
基金Project (Nos.49831005 and 49871043) supported by the National Natural Science Foundation of China.
文摘Charge characteristics and Cu2+ adsorption-desorption of soils with variable charge (latosol) and permanent charge (brown soil) and the relationship between them were studied by means of back-titration and adsorption equilibrium respectively. The amount of variable negative charge was much less in variable-charge soil than in permanent-charge soil and increased with the pH in the system, but the opposite trend occurred in the points of zero charge (PZCs). The amount of Cu2+ ions sorbed by permanent-charge soil was more than that by variable-charge soil and increased with the increase of Cu2+ concentration within a certain range in the equilibrium solution. The amount of Cu2+ ions desorbed with KC1 from permanent-charge soil was more than that from variable-charge soil, but the amount of Cu2+ ions desorbed with de-ionized water from permanent-charge soil was extremely low whereas there was still a certain amount of desorption from variable-charge soil. The increase of PZC of soils with variable or permanent charge varied with the increment of Cu2+ ions added. When the same amount of Cu2+ ions was added, the increments of PZC and variable negative surface charge of permanent-charge soil were different from those of variable-charge soil.
基金Project supported by the National Naturai Science Foundation of China
文摘A new technique for studying the adsorption kinetics of heavy metals,Pb^2+ and Cu^2+,on variable charge surfaces was established with two selective electrodes and microcomputer control system.Feasibility of the technique,including interference of other ions (mainly Fe^3+ and Al^3+),response time of electrodes,and the pH range of testing,was studied.Comparision with the most widely used miscible displacement technique,which was considered insufficient in studying 30-minute rapid reactions,at present time showed that the new technique was more advantageous in testing in situ,easy to operate,and economic.