In situ angle dispersive synchrotron X-ray diffraction and Raman scattering measurements under pressure are em- ployed to study the structural evolution of Cu4Bi4S9 nanoribbons, which are fabricated by using a facile ...In situ angle dispersive synchrotron X-ray diffraction and Raman scattering measurements under pressure are em- ployed to study the structural evolution of Cu4Bi4S9 nanoribbons, which are fabricated by using a facile solvothermal method. Both experiments show that a structural phase transition occurs near 14.5 GPa, and there is a pressure-induced re- versible amorphization at about 25.6 GPa. The electrical transport property of a single Cu4Bi4S9 nanoribbon under different pressures is also investigated.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2012CB932302)the National Natural Science Foundation of China(Grant No.11174336)
文摘In situ angle dispersive synchrotron X-ray diffraction and Raman scattering measurements under pressure are em- ployed to study the structural evolution of Cu4Bi4S9 nanoribbons, which are fabricated by using a facile solvothermal method. Both experiments show that a structural phase transition occurs near 14.5 GPa, and there is a pressure-induced re- versible amorphization at about 25.6 GPa. The electrical transport property of a single Cu4Bi4S9 nanoribbon under different pressures is also investigated.