A new concept of undercooling heredity is developed to evaluate the undercooling ability in a non catalytic nucleation coated mould, where alloy melts were highly undercooled previously. Before the heredity experiment...A new concept of undercooling heredity is developed to evaluate the undercooling ability in a non catalytic nucleation coated mould, where alloy melts were highly undercooled previously. Before the heredity experiment a non catalytic nucleation composite glass lined coating (B F) was prepared on the inner surface of mould and the Cu 70 Ni 30 alloy was selected to perform undercooling experiment in the B F non catalytic coating mould. Its ratio of undercooling heredity was 0.76. The results prove that the B F coating is an ideal non catalytic media for purified Cu 70 Ni 30 alloy melts due to its small contact angle between the melt and coating layer. Considering that various microstructures form under different undercoolings, two critical undercoolings, Δ T 1 and Δ T 2, and their corresponding microstructures of Cu 70 Ni 30 alloy are well defined. Moreover, it is found that the manned trigging solidification in the non catalytic coating mould could be used to get directional undercooling dendrite structure while the melt undercooling is larger than the critical undercooling Δ T 2.展开更多
Experiments of X-ray diffraction for liquid Cu70Ni30 alloy above and below its liquidus (1 230℃) have been carried out. By the analysis of experimental results, it is discovered that difference between structures of ...Experiments of X-ray diffraction for liquid Cu70Ni30 alloy above and below its liquidus (1 230℃) have been carried out. By the analysis of experimental results, it is discovered that difference between structures of liquid and undercooled Cu70Ni30 alloy is their cluster sizes. The correlation radius of cluster is 1.125 nm and the atom number of cluster is 403 at 1 250-1 400℃, and they are 1.3 nm and 704 respectively at the undercooled liquid state (1 200℃). The structure of liquid alloy is fee short order and its solid structure, fcc, is kept from liquid fcc short order.展开更多
A molecular dynamics (MD) simulation study has been performed for the rapid solidification of Cu70Ni30 adopting the quantum Sutton-Chen many-body potentials. By analyzing the bond-types and the relation of atomic aver...A molecular dynamics (MD) simulation study has been performed for the rapid solidification of Cu70Ni30 adopting the quantum Sutton-Chen many-body potentials. By analyzing the bond-types and the relation of atomic average energy versus temperature, it was demonstrated that as cooling rate being 2 × 1012 K/s, the Cu70Ni30 formed fcc crystal structures and freezing point was found. In addition, having analyzed the transformation of microstructures and the detail of crystal growth by using atomic trace and visual method, not only could the formation of binary disordered solid solution be showed, but also the solidification of liquid metals and the crystal growth processes could be further understood.展开更多
文摘A new concept of undercooling heredity is developed to evaluate the undercooling ability in a non catalytic nucleation coated mould, where alloy melts were highly undercooled previously. Before the heredity experiment a non catalytic nucleation composite glass lined coating (B F) was prepared on the inner surface of mould and the Cu 70 Ni 30 alloy was selected to perform undercooling experiment in the B F non catalytic coating mould. Its ratio of undercooling heredity was 0.76. The results prove that the B F coating is an ideal non catalytic media for purified Cu 70 Ni 30 alloy melts due to its small contact angle between the melt and coating layer. Considering that various microstructures form under different undercoolings, two critical undercoolings, Δ T 1 and Δ T 2, and their corresponding microstructures of Cu 70 Ni 30 alloy are well defined. Moreover, it is found that the manned trigging solidification in the non catalytic coating mould could be used to get directional undercooling dendrite structure while the melt undercooling is larger than the critical undercooling Δ T 2.
文摘Experiments of X-ray diffraction for liquid Cu70Ni30 alloy above and below its liquidus (1 230℃) have been carried out. By the analysis of experimental results, it is discovered that difference between structures of liquid and undercooled Cu70Ni30 alloy is their cluster sizes. The correlation radius of cluster is 1.125 nm and the atom number of cluster is 403 at 1 250-1 400℃, and they are 1.3 nm and 704 respectively at the undercooled liquid state (1 200℃). The structure of liquid alloy is fee short order and its solid structure, fcc, is kept from liquid fcc short order.
基金supported by the National Natural Science Foundation of China(Grant No.50271026).
文摘A molecular dynamics (MD) simulation study has been performed for the rapid solidification of Cu70Ni30 adopting the quantum Sutton-Chen many-body potentials. By analyzing the bond-types and the relation of atomic average energy versus temperature, it was demonstrated that as cooling rate being 2 × 1012 K/s, the Cu70Ni30 formed fcc crystal structures and freezing point was found. In addition, having analyzed the transformation of microstructures and the detail of crystal growth by using atomic trace and visual method, not only could the formation of binary disordered solid solution be showed, but also the solidification of liquid metals and the crystal growth processes could be further understood.