Transition metals like Au,Ag,and Cu have been reported to be quite active for CO_(2) reduction.In this study,we use density functional theory(DFT)calculation to investigate the electronic structure and catalytic perfo...Transition metals like Au,Ag,and Cu have been reported to be quite active for CO_(2) reduction.In this study,we use density functional theory(DFT)calculation to investigate the electronic structure and catalytic performance of Au,Ag,Cu and their alloys for CO_(2) reduction reaction(CO_(2)RR).Theoretical calculations identified the combination of Ag,Cu,and Au in a face-centered cubic(fcc)alloy as an outstanding electrocatalyst for CO_(2) reduction to CO,with Cu as the active site.The d-orbital projected density of state(PDOS)profile suggests that alloying alters the electronic structure of the Cu site,thereby affecting the Gibbs free energy change for the formation of*COOH intermediate(ΔG_(*COOH)).To demonstrate the theoretical prediction experimentally,we employ a top-down dealloying approach to synthesize a nanoporous structured AgCuAu alloy(NP-Ag_(5)Cu_(5)Au_(5)).Electrochemical experiments validate that the ternary alloy catalyst is clearly better than unary and binary catalysts,showing a Faradaic efficiency(FE)for CO over 90%across a broad potential range of 0.6 V,with a peak of approximately 96%at-0.573 V vs.RHE.This study underscores the potential of multi-component alloys in CO_(2)RR and establishes a theoretical basis for designing efficient catalysts for CO_(2) utilization.展开更多
First-principles calculations based on density functional theory were performed to study the effect of alloying on the thermodynamic stability of MgH2 hydride (rutile and fluorite structures) with transitional meta...First-principles calculations based on density functional theory were performed to study the effect of alloying on the thermodynamic stability of MgH2 hydride (rutile and fluorite structures) with transitional metals (TM=Sc, Ti, Y) and group IIA elements (M=Ca, Sr, Ba). The results indicate that fluorite structure of these hydrides are more stable than its relative rutile structure at low alloying content (less 20%), structural destabilization of MgH2 appears in the alloying cases of Ti, Sr and Ba respectively. The structure-transition point from rutile structure to fluorite structure is at around 20% for MgH2-TM, and about 40% for MgH2-M. The formation enthalpy of fluorite Mg0.5Ba0.52 is about 0.3 eV and higher than that of fluorite MgH2, indicating that its hydrogen-desorption temperature at atmospheric pressure will be much lower than that of pure MgH2. Good consistency between experimental and calculated data suggests that above-adopted method is useful to predict structural transition and properties of MgH2 based hydrides for hydrogen storage.展开更多
Ti3AlC2 has the properties of ceramics and metals. These excellent properties indicate that Ti3AlC2 is a very promising material to extensive applications. Ti3AlC2 ceramic material was prepared by mechanical alloying....Ti3AlC2 has the properties of ceramics and metals. These excellent properties indicate that Ti3AlC2 is a very promising material to extensive applications. Ti3AlC2 ceramic material was prepared by mechanical alloying. The effects of milling time and sintering temperature on the fracture, microstmctttre and mechanical properties of Ti3AlC2 ceramic material were analyzed by laser particle analyzer, X-ray diffraction, and scanning electron microscopy. The experimental results showed that Ti3AlC2 had the best comprehensive properties after the composite powder was milled for 3 h and sintered at 1630℃ for 2 h. The relative density, bending strength, and hardness of the sample reached 92.23%, 345.2 MPa, and HRA 34.1, respectively. The fracture surface indicated that the fracture of the material belonged to ductile rapture.展开更多
The alloying effects of V on structural,elastic and electronic properties of TiFe_2 phase were investigated by the first-principles calculations based on the density functional theory.The calculated energy properties ...The alloying effects of V on structural,elastic and electronic properties of TiFe_2 phase were investigated by the first-principles calculations based on the density functional theory.The calculated energy properties including cohesive energy and formation enthalpy indicate V atom would preferentially substitute on 6h sites of Fe atoms in the lattice of TiFe_2 to form the intermetallic Ti_4Fe_7(V).The calculated results of polycrystalline elastic parameters confirm that the plasticity of TiFe_2 would be improved with the addition of V.By discussing the percentage of elastic anisotropy,anisotropy in linear bulk modulus and directional dependence of elastic modulus,it is revealed that the anisotropy of TiFe_2 and Ti_4Fe_7(V) is small.Finally,the density of states,charge density distribution and Mulliken population for TiFe_2 and Ti_4Fe_7(V) were calculated,suggesting there is a mixed bonding with metallic,covalent and ionic nature in TiFe_2 and Ti_4Fe_7(V) compounds.These results also clarify that the reason for the improvement of plasticity with the addition of V in TiFe_2 is the weakened bonding of covalent feature between Ti and V atoms.展开更多
The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of ...The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of support doping and bimetallic alloying on the catalytic performance of Pt/Ce O_(2)-based nanocatalysts in water gas shift reaction was reported in this work.Various lanthanide ions and 3d transition metals were respectively introduced into the Ce O_(2)support or Pt to form Pt/Ce O_(2):Ln(Ln=La,Nd,Gd,Tb,Yb)and Pt M/Ce O_(2)(M=Fe,Co,Ni)nanocatalysts.The sample of Pt/Ce O_(2):Tb showed the highest activity(TOF at 200℃=0.051 s^(-1))among the Pt/Ce O_(2):Ln and the undoped Pt/Ce O_(2)catalysts.Besides,the sample of Pt Fe/Ce O_(2)exhibited the highest activity(TOF at 200℃=0.12 s^(-1))among Pt M/Ce O_(2)catalysts.The results of the multiple characterizations indicated that the catalytic activity of Pt/Ce O_(2):Ln catalysts was closely correlated with the amount of oxygen vacancies in doped ceria support.However,the different activity of Pt M/Ce O_(2)bimetallic catalysts was owing to the various Pt oxidation states of the bimetals dispersed on ceria.The study of the reaction pathway indicated that both the samples of Pt/Ce O_(2)and Pt/Ce O_(2):Tb catalyzed the reaction through the formate pathway,and the enhanced activity of the latter derived from the increased concentration of oxygen vacancies along with promoted water dissociation.As for the sample of Pt Fe/Ce O_(2),its catalytic mechanism was the carboxyl route with a higher reaction rate due to the moderate valence of Pt along with improved CO activation.展开更多
Bulk mechanical alloying (BMA) has been successfully applied to solid-state synthesis of p-type and n-type thermoelectric materials Mg2Si1-xSnx (x = 0, 0.2, 0.4, 0.6, 0.8, 1) from element-powders at the room tempe...Bulk mechanical alloying (BMA) has been successfully applied to solid-state synthesis of p-type and n-type thermoelectric materials Mg2Si1-xSnx (x = 0, 0.2, 0.4, 0.6, 0.8, 1) from element-powders at the room temperature in a relatively short time. The electrical conductivity, the Seebeck coefficient and the thermal conductivity of the Mg2Si1-xSnx are quite sensitive to the x-content. With the x-content rising, the electrical conductivity increases. When x = 0.6, it reaches the lowest and Mg2Si shows an n-type of semi-conducting However, when x = 0.2 and T 〉525 K, the Seebeck coefficient of the samples will change the opposite way. While x≥0.4, the samples present a p-type of semi-conducting. The figure of merit, Z of Mg2Si1-xSnx will be obtained in the range from 300 K to 700 K. When x = 0.6, Z proves to be higher than that of other samples at 300 K≤ T≤650 K.展开更多
Mg-20wt.%Fe_(23)Y_(8) composite was successfully prepared by reactive mechanical alloying(RMA).X-ray diffraction(XRD)measurement shows that the main phases of composite are MgH_(2) and Mg2FeH6.The composite exhibits e...Mg-20wt.%Fe_(23)Y_(8) composite was successfully prepared by reactive mechanical alloying(RMA).X-ray diffraction(XRD)measurement shows that the main phases of composite are MgH_(2) and Mg2FeH6.The composite exhibits excellent hydrogen abs/desorption properties and can absorb 4.36wt.%and 5.72wt.%hydrogen at 473 and 573 K in 10 min under 3.0 MPa hydrogen pressure,respectively.The composite can desorb 5.27wt.%hydrogen at 573 K in 30 min under 0.02 MPa hydrogen pressure.Compared with the pure MgH_(2),the hydrogen desorption temperature of Mg-20wt.%Fe_(23)Y_(8) composite is decreased about 40℃.It is supposed that both the catalyst effect of Fe-Y distributed in Mg substrate and the crystal defects play the main role in improving hydrogen sorption properties of Mg-20wt.%Fe_(23)Y_(8) composite.展开更多
A NiAl/TiB2 nanocomposite is synthesized by mechanical alloying elemental powders. Upon milling for a certain time, an abrupt exothermic reaction occurs and a large amount of NiAl and TiB2 compounds form simultaneousl...A NiAl/TiB2 nanocomposite is synthesized by mechanical alloying elemental powders. Upon milling for a certain time, an abrupt exothermic reaction occurs and a large amount of NiAl and TiB2 compounds form simultaneously. It is suggested that two separate chemical reactions,i.e. Ni+Al →NiAl and Ti+2B→TiB2, are involved during the exothermic reaction. Additionof Ti and B to Ni-Al system impedes the structural evolution of Ni and Al powders and delays the abrupt reaction. The final products are equilibrium phases without any metastable phases formed. This type of reaction is suggested to be suitable for alloy systems with two large heatrelease reactions.展开更多
基金supported by Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application(No.ZDSYS20220527171407017)。
文摘Transition metals like Au,Ag,and Cu have been reported to be quite active for CO_(2) reduction.In this study,we use density functional theory(DFT)calculation to investigate the electronic structure and catalytic performance of Au,Ag,Cu and their alloys for CO_(2) reduction reaction(CO_(2)RR).Theoretical calculations identified the combination of Ag,Cu,and Au in a face-centered cubic(fcc)alloy as an outstanding electrocatalyst for CO_(2) reduction to CO,with Cu as the active site.The d-orbital projected density of state(PDOS)profile suggests that alloying alters the electronic structure of the Cu site,thereby affecting the Gibbs free energy change for the formation of*COOH intermediate(ΔG_(*COOH)).To demonstrate the theoretical prediction experimentally,we employ a top-down dealloying approach to synthesize a nanoporous structured AgCuAu alloy(NP-Ag_(5)Cu_(5)Au_(5)).Electrochemical experiments validate that the ternary alloy catalyst is clearly better than unary and binary catalysts,showing a Faradaic efficiency(FE)for CO over 90%across a broad potential range of 0.6 V,with a peak of approximately 96%at-0.573 V vs.RHE.This study underscores the potential of multi-component alloys in CO_(2)RR and establishes a theoretical basis for designing efficient catalysts for CO_(2) utilization.
文摘First-principles calculations based on density functional theory were performed to study the effect of alloying on the thermodynamic stability of MgH2 hydride (rutile and fluorite structures) with transitional metals (TM=Sc, Ti, Y) and group IIA elements (M=Ca, Sr, Ba). The results indicate that fluorite structure of these hydrides are more stable than its relative rutile structure at low alloying content (less 20%), structural destabilization of MgH2 appears in the alloying cases of Ti, Sr and Ba respectively. The structure-transition point from rutile structure to fluorite structure is at around 20% for MgH2-TM, and about 40% for MgH2-M. The formation enthalpy of fluorite Mg0.5Ba0.52 is about 0.3 eV and higher than that of fluorite MgH2, indicating that its hydrogen-desorption temperature at atmospheric pressure will be much lower than that of pure MgH2. Good consistency between experimental and calculated data suggests that above-adopted method is useful to predict structural transition and properties of MgH2 based hydrides for hydrogen storage.
文摘Ti3AlC2 has the properties of ceramics and metals. These excellent properties indicate that Ti3AlC2 is a very promising material to extensive applications. Ti3AlC2 ceramic material was prepared by mechanical alloying. The effects of milling time and sintering temperature on the fracture, microstmctttre and mechanical properties of Ti3AlC2 ceramic material were analyzed by laser particle analyzer, X-ray diffraction, and scanning electron microscopy. The experimental results showed that Ti3AlC2 had the best comprehensive properties after the composite powder was milled for 3 h and sintered at 1630℃ for 2 h. The relative density, bending strength, and hardness of the sample reached 92.23%, 345.2 MPa, and HRA 34.1, respectively. The fracture surface indicated that the fracture of the material belonged to ductile rapture.
基金Project(51401099)supported by the National Natural Science Foundation of ChinaProject(201501079)supported by the Doctor Startup Foundation of Liaoning Province,China
文摘The alloying effects of V on structural,elastic and electronic properties of TiFe_2 phase were investigated by the first-principles calculations based on the density functional theory.The calculated energy properties including cohesive energy and formation enthalpy indicate V atom would preferentially substitute on 6h sites of Fe atoms in the lattice of TiFe_2 to form the intermetallic Ti_4Fe_7(V).The calculated results of polycrystalline elastic parameters confirm that the plasticity of TiFe_2 would be improved with the addition of V.By discussing the percentage of elastic anisotropy,anisotropy in linear bulk modulus and directional dependence of elastic modulus,it is revealed that the anisotropy of TiFe_2 and Ti_4Fe_7(V) is small.Finally,the density of states,charge density distribution and Mulliken population for TiFe_2 and Ti_4Fe_7(V) were calculated,suggesting there is a mixed bonding with metallic,covalent and ionic nature in TiFe_2 and Ti_4Fe_7(V) compounds.These results also clarify that the reason for the improvement of plasticity with the addition of V in TiFe_2 is the weakened bonding of covalent feature between Ti and V atoms.
基金financial support from the National Natural Science Foundation of China(21832001 and 21771009)the Beijing National Laboratory for Molecular Sciences(BNLMSCXXM-202104)。
文摘The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of support doping and bimetallic alloying on the catalytic performance of Pt/Ce O_(2)-based nanocatalysts in water gas shift reaction was reported in this work.Various lanthanide ions and 3d transition metals were respectively introduced into the Ce O_(2)support or Pt to form Pt/Ce O_(2):Ln(Ln=La,Nd,Gd,Tb,Yb)and Pt M/Ce O_(2)(M=Fe,Co,Ni)nanocatalysts.The sample of Pt/Ce O_(2):Tb showed the highest activity(TOF at 200℃=0.051 s^(-1))among the Pt/Ce O_(2):Ln and the undoped Pt/Ce O_(2)catalysts.Besides,the sample of Pt Fe/Ce O_(2)exhibited the highest activity(TOF at 200℃=0.12 s^(-1))among Pt M/Ce O_(2)catalysts.The results of the multiple characterizations indicated that the catalytic activity of Pt/Ce O_(2):Ln catalysts was closely correlated with the amount of oxygen vacancies in doped ceria support.However,the different activity of Pt M/Ce O_(2)bimetallic catalysts was owing to the various Pt oxidation states of the bimetals dispersed on ceria.The study of the reaction pathway indicated that both the samples of Pt/Ce O_(2)and Pt/Ce O_(2):Tb catalyzed the reaction through the formate pathway,and the enhanced activity of the latter derived from the increased concentration of oxygen vacancies along with promoted water dissociation.As for the sample of Pt Fe/Ce O_(2),its catalytic mechanism was the carboxyl route with a higher reaction rate due to the moderate valence of Pt along with improved CO activation.
基金National Natural Science Foundation of China (50504002)
文摘Bulk mechanical alloying (BMA) has been successfully applied to solid-state synthesis of p-type and n-type thermoelectric materials Mg2Si1-xSnx (x = 0, 0.2, 0.4, 0.6, 0.8, 1) from element-powders at the room temperature in a relatively short time. The electrical conductivity, the Seebeck coefficient and the thermal conductivity of the Mg2Si1-xSnx are quite sensitive to the x-content. With the x-content rising, the electrical conductivity increases. When x = 0.6, it reaches the lowest and Mg2Si shows an n-type of semi-conducting However, when x = 0.2 and T 〉525 K, the Seebeck coefficient of the samples will change the opposite way. While x≥0.4, the samples present a p-type of semi-conducting. The figure of merit, Z of Mg2Si1-xSnx will be obtained in the range from 300 K to 700 K. When x = 0.6, Z proves to be higher than that of other samples at 300 K≤ T≤650 K.
基金This work was financially supported by the Ministry of Science and Technology of China(No.2003AA518010).
文摘Mg-20wt.%Fe_(23)Y_(8) composite was successfully prepared by reactive mechanical alloying(RMA).X-ray diffraction(XRD)measurement shows that the main phases of composite are MgH_(2) and Mg2FeH6.The composite exhibits excellent hydrogen abs/desorption properties and can absorb 4.36wt.%and 5.72wt.%hydrogen at 473 and 573 K in 10 min under 3.0 MPa hydrogen pressure,respectively.The composite can desorb 5.27wt.%hydrogen at 573 K in 30 min under 0.02 MPa hydrogen pressure.Compared with the pure MgH_(2),the hydrogen desorption temperature of Mg-20wt.%Fe_(23)Y_(8) composite is decreased about 40℃.It is supposed that both the catalyst effect of Fe-Y distributed in Mg substrate and the crystal defects play the main role in improving hydrogen sorption properties of Mg-20wt.%Fe_(23)Y_(8) composite.
文摘A NiAl/TiB2 nanocomposite is synthesized by mechanical alloying elemental powders. Upon milling for a certain time, an abrupt exothermic reaction occurs and a large amount of NiAl and TiB2 compounds form simultaneously. It is suggested that two separate chemical reactions,i.e. Ni+Al →NiAl and Ti+2B→TiB2, are involved during the exothermic reaction. Additionof Ti and B to Ni-Al system impedes the structural evolution of Ni and Al powders and delays the abrupt reaction. The final products are equilibrium phases without any metastable phases formed. This type of reaction is suggested to be suitable for alloy systems with two large heatrelease reactions.