Polycrystalline CuGaSe2 thin films on Mo-coated soda-lime glass substrates have been synthesized by coevaporation process from Cu, Ga and Se sources. Structural and electrical properties of the as-grown CuGaSe2 films ...Polycrystalline CuGaSe2 thin films on Mo-coated soda-lime glass substrates have been synthesized by coevaporation process from Cu, Ga and Se sources. Structural and electrical properties of the as-grown CuGaSe2 films strongly depend on the film composition. Stoichiometric CuGaSe2 is fabricated, as indicated by x-ray diffraction spectroscope (XRD) and x-ray fluorescence (XRF). A two-phase region is composed of CuGaSe2 and Cu2-xSe phases for Cu-rich films, and CuGaSe2 and CuGa3Se5 phases for Ga-rich films, respectively. Morphological properties are detected by scanning electron microscope (SEM) for various compositional films, the grain sizes of the CuGaSe2films decrease with the extent of deviation from stoichiometric composition. Raman spectroscopy of Cu-rich samples shows that there exist large Cu-Se particles on the film surface. The results from Hall effect measurements for typical samples indicate that CuGaSe2 films are always of p-type semiconductor from Cu-rich to Ga-rich. Stoichiometric CuGaSe2 films exhibit relatively large mobility than any other compositional films. Finally, polycrystalline CuGaSe2 thin film solar cell with a best conversion efficiency of 6.02% has been achieved under the standard air mass (AM)1.5 spectrum for 100mW/cm^2 at room temperature (aperture area, 0.24cm^2). The open circuit voltage of the CuGaSe2 solar cells is close to770 mV.展开更多
采用脉冲激光沉积法在SiO2衬底上制备了CuGa0.8Ge0.2Se2薄膜。采用X射线衍射和X射线能谱仪研究了退火温度对薄膜晶体结构和成分的影响,利用扫描电子显微镜表征了薄膜的表面形貌,采用紫外—可见分光光度计分析了薄膜的光学特性。结果表明...采用脉冲激光沉积法在SiO2衬底上制备了CuGa0.8Ge0.2Se2薄膜。采用X射线衍射和X射线能谱仪研究了退火温度对薄膜晶体结构和成分的影响,利用扫描电子显微镜表征了薄膜的表面形貌,采用紫外—可见分光光度计分析了薄膜的光学特性。结果表明,在CuGaSe2中掺杂Ⅳ族元素Ge,光子吸收能量分别为0.65和0.92 e V,禁带宽度为1.57 e V,能够形成中间带。并随着退火温度的升高,CuGa0.8Ge0.2Se2薄膜的光学带隙逐渐减小。展开更多
The electronic structures of solid solutions CuGal_xlnxTe2 are systematically investigated using the full-potential all-electron linearized augmented plane wave method. The calculated lattice parameters almost linearl...The electronic structures of solid solutions CuGal_xlnxTe2 are systematically investigated using the full-potential all-electron linearized augmented plane wave method. The calculated lattice parameters almost linearly increase with the increase of the In composition, which are in good agreement with the available experimental results. The calculated band structures with the modified Becke-Johnson potential show that all solid solutions are direct gap conductors. The band gap decreases linearly with In composition increasing. Based on the electronic structure calculated, we investigate the thermoelectric properties by the semi-classical Boltzmann transport theory. The results suggest that when Ga is replaced by In, the bipolar effect of Seebeck coefficient S becomes very obvious. The Seebeck coefficient even changes its sign from positive to negative for p-type doping at low carrier concentrations. The optimal p-type doping concentrations have been estimated based on the predicted maximum values of the power factor divided by the scattering time.展开更多
Ternary Ⅰ–Ⅲ–Ⅵquantum dots(QDs) of chalcopyrite semiconductors exhibit excellent optical properties in solar cells. In this study, ternary chalcopyrite CuGaS2nanocrystals(2–5 nm) were one-pot anchored on TiO2...Ternary Ⅰ–Ⅲ–Ⅵquantum dots(QDs) of chalcopyrite semiconductors exhibit excellent optical properties in solar cells. In this study, ternary chalcopyrite CuGaS2nanocrystals(2–5 nm) were one-pot anchored on TiO2nanoparticles(TiO2@CGS) without any long ligand. The solar cell with TiO2@CuGaS2/N719 has a power conversion efficiency of7.4%, which is 23% higher than that of monosensitized dye solar cell. Anchoring CuGaS2 QDs on semiconductor nanoparticles to form QDs/dye co-sensitized solar cells is a promising and feasible approach to enhance light absorption,charge carrier generation as well as to facilitate electron injection comparing to conventional mono-dye sensitized solar cells.展开更多
基金Project supported by the National High Technology Joint Research Program of China (Grant No 2004AA513020)
文摘Polycrystalline CuGaSe2 thin films on Mo-coated soda-lime glass substrates have been synthesized by coevaporation process from Cu, Ga and Se sources. Structural and electrical properties of the as-grown CuGaSe2 films strongly depend on the film composition. Stoichiometric CuGaSe2 is fabricated, as indicated by x-ray diffraction spectroscope (XRD) and x-ray fluorescence (XRF). A two-phase region is composed of CuGaSe2 and Cu2-xSe phases for Cu-rich films, and CuGaSe2 and CuGa3Se5 phases for Ga-rich films, respectively. Morphological properties are detected by scanning electron microscope (SEM) for various compositional films, the grain sizes of the CuGaSe2films decrease with the extent of deviation from stoichiometric composition. Raman spectroscopy of Cu-rich samples shows that there exist large Cu-Se particles on the film surface. The results from Hall effect measurements for typical samples indicate that CuGaSe2 films are always of p-type semiconductor from Cu-rich to Ga-rich. Stoichiometric CuGaSe2 films exhibit relatively large mobility than any other compositional films. Finally, polycrystalline CuGaSe2 thin film solar cell with a best conversion efficiency of 6.02% has been achieved under the standard air mass (AM)1.5 spectrum for 100mW/cm^2 at room temperature (aperture area, 0.24cm^2). The open circuit voltage of the CuGaSe2 solar cells is close to770 mV.
文摘采用脉冲激光沉积法在SiO2衬底上制备了CuGa0.8Ge0.2Se2薄膜。采用X射线衍射和X射线能谱仪研究了退火温度对薄膜晶体结构和成分的影响,利用扫描电子显微镜表征了薄膜的表面形貌,采用紫外—可见分光光度计分析了薄膜的光学特性。结果表明,在CuGaSe2中掺杂Ⅳ族元素Ge,光子吸收能量分别为0.65和0.92 e V,禁带宽度为1.57 e V,能够形成中间带。并随着退火温度的升高,CuGa0.8Ge0.2Se2薄膜的光学带隙逐渐减小。
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2012M511603)
文摘The electronic structures of solid solutions CuGal_xlnxTe2 are systematically investigated using the full-potential all-electron linearized augmented plane wave method. The calculated lattice parameters almost linearly increase with the increase of the In composition, which are in good agreement with the available experimental results. The calculated band structures with the modified Becke-Johnson potential show that all solid solutions are direct gap conductors. The band gap decreases linearly with In composition increasing. Based on the electronic structure calculated, we investigate the thermoelectric properties by the semi-classical Boltzmann transport theory. The results suggest that when Ga is replaced by In, the bipolar effect of Seebeck coefficient S becomes very obvious. The Seebeck coefficient even changes its sign from positive to negative for p-type doping at low carrier concentrations. The optimal p-type doping concentrations have been estimated based on the predicted maximum values of the power factor divided by the scattering time.
基金the financial support from the National Key Research and Development Program of China(2016YFA0201001)the National Natural Science Foundation of China(11627801,51102172 and 11772207)+7 种基金Science and Technology Plan of Shenzhen City(JCYJ20160331191436180)the Leading Talents of Guangdong Province Program(2016LJ06C372)the Natural ScienceFoundation for Outstanding Young Researcher in Hebei Province(E2016210093)the Key Program of Educational Commission of Hebei Province of China(ZD2016022)the Youth Top-notch Talents Supporting Plan of Hebei Provincethe Graduate Innovation Foundation of Shijiazhuang Tiedao UniversityHebei Provincial Key Laboratory of Traffic Engineering materialsHebei Key Discipline Construction Project
文摘Ternary Ⅰ–Ⅲ–Ⅵquantum dots(QDs) of chalcopyrite semiconductors exhibit excellent optical properties in solar cells. In this study, ternary chalcopyrite CuGaS2nanocrystals(2–5 nm) were one-pot anchored on TiO2nanoparticles(TiO2@CGS) without any long ligand. The solar cell with TiO2@CuGaS2/N719 has a power conversion efficiency of7.4%, which is 23% higher than that of monosensitized dye solar cell. Anchoring CuGaS2 QDs on semiconductor nanoparticles to form QDs/dye co-sensitized solar cells is a promising and feasible approach to enhance light absorption,charge carrier generation as well as to facilitate electron injection comparing to conventional mono-dye sensitized solar cells.