采用扫描电镜、能谱仪、微区X射线衍射仪研究了Cu Ni Sn Ti活性钎料钎焊立方氮化硼(c-BN)界面产物的微观结构和形成机理,并运用动力学分析了界面反应产物的生长过程及反应激活能.结果表明,钎焊过程中CuNi Sn Ti钎料对c-BN具有良好的...采用扫描电镜、能谱仪、微区X射线衍射仪研究了Cu Ni Sn Ti活性钎料钎焊立方氮化硼(c-BN)界面产物的微观结构和形成机理,并运用动力学分析了界面反应产物的生长过程及反应激活能.结果表明,钎焊过程中CuNi Sn Ti钎料对c-BN具有良好的润湿性,钎料与c-BN发生化学反应,实现c-BN与钢基体的可靠连接;钎料与c-BN界面处生成Ti-N和Ti-B化合物新相,形成了钎料/Ti N/Ti B/Ti B2/c-BN的结构形式;在钎焊温度1 323∽1 398 K,保温时间5∽20 min之间依据抛物线生长法则指出界面处产生的化学反应和原子间的相互扩散是促使界面反应层形成与生长的主要因素及形成机理.展开更多
文摘采用扫描电镜、能谱仪、微区X射线衍射仪研究了Cu Ni Sn Ti活性钎料钎焊立方氮化硼(c-BN)界面产物的微观结构和形成机理,并运用动力学分析了界面反应产物的生长过程及反应激活能.结果表明,钎焊过程中CuNi Sn Ti钎料对c-BN具有良好的润湿性,钎料与c-BN发生化学反应,实现c-BN与钢基体的可靠连接;钎料与c-BN界面处生成Ti-N和Ti-B化合物新相,形成了钎料/Ti N/Ti B/Ti B2/c-BN的结构形式;在钎焊温度1 323∽1 398 K,保温时间5∽20 min之间依据抛物线生长法则指出界面处产生的化学反应和原子间的相互扩散是促使界面反应层形成与生长的主要因素及形成机理.