Thermal expansion characteristics of semimetal nylon composites (nylon 1010 incorporated with metal oxides) were analyzed with thermal expansion instrument. The changes of composite weight after being heated and the h...Thermal expansion characteristics of semimetal nylon composites (nylon 1010 incorporated with metal oxides) were analyzed with thermal expansion instrument. The changes of composite weight after being heated and the heat absorption and release of the composites were analyzed by carrying out TG-DSC experiments. Experimental results show that the average thermal expansion coefficient of the composites rises as the average diameter of the metal oxides decrease from room temperature to 160 ℃. Thermal dynamics and physical properties of the nylon composites change with the addition of the oxides; the crystallization temperature rises from 180 ℃ of pure nylon to 190 ℃ (maximum) and the melting point of the oxide composites also increases continuously with the addition of the oxides. The water content of the oxide/nylon composite is related to the kind and content of the oxide. The water content reaches its maximum when the content of oxide is 10%, and the 10% Al2O3/nylon composite has a water absorption ratio up to 1%.展开更多
基金Projects 50225519 supported by the National Natural Science Foundation of China and 0E4458the Youth Science Foundation of China University of Mining & Technology
文摘Thermal expansion characteristics of semimetal nylon composites (nylon 1010 incorporated with metal oxides) were analyzed with thermal expansion instrument. The changes of composite weight after being heated and the heat absorption and release of the composites were analyzed by carrying out TG-DSC experiments. Experimental results show that the average thermal expansion coefficient of the composites rises as the average diameter of the metal oxides decrease from room temperature to 160 ℃. Thermal dynamics and physical properties of the nylon composites change with the addition of the oxides; the crystallization temperature rises from 180 ℃ of pure nylon to 190 ℃ (maximum) and the melting point of the oxide composites also increases continuously with the addition of the oxides. The water content of the oxide/nylon composite is related to the kind and content of the oxide. The water content reaches its maximum when the content of oxide is 10%, and the 10% Al2O3/nylon composite has a water absorption ratio up to 1%.