The size of the nanoparticles and the number of oxygen vacancies have a significant effect on the catalytic activity of copper-based catalysts used for the synthesis of methanol from syngas.In this study,the authors p...The size of the nanoparticles and the number of oxygen vacancies have a significant effect on the catalytic activity of copper-based catalysts used for the synthesis of methanol from syngas.In this study,the authors prepared a series of catalysts CuO/ZnO/Al_(2)O_(3)/CeO_(2)(CZAC)with CuO particles of different sizes and varying number of oxygen vacancies on the surface by changing the added volume of CeO2 by using the co-precipitation method.The properties of the catalysts were characterized and their activity was evaluated by using high-pressure fixed-bed reaction equipment.The results showed that the addition of CeO_(2)to CuO/ZnO/Al_(2)O_(3)not only influenced the size of the CuO particles and metal-metal interactions,but also had an effect on the concentrations of oxygen vacancies and strongly basic sites.The presence of CuO particles of small sizes and a large numbers of oxygen vacancies on the surface of the catalyst were beneficial to its activity for the synthesis of methanol.The catalyst CZAC,when modified by 5%of CeO_(2),recorded CuO particles of the smallest size(8.9 nm),strong intermetallic interactions,and the highest concentrations of oxygen vacancies and strongly basic sites.It also exhibited the highest catalytic activity,with a space-time yield of methanol of 0.315 g/(h·g)that was higher than that of the enterprise RK-5 catalyst[0.215 g/(h·g)].展开更多
Zirconia-supported CuO (CuO/ZrO2) composite photocatalysts were successfully synthesized via citric acid-assisted sol-gel technique. For comparison, CuO/ZrO2 materials were also prepared by solid state reaction and ...Zirconia-supported CuO (CuO/ZrO2) composite photocatalysts were successfully synthesized via citric acid-assisted sol-gel technique. For comparison, CuO/ZrO2 materials were also prepared by solid state reaction and co-precipitation method. The as-prepared powders were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM), and thermogravimetric-differential thermal analysis (TG-DTA). The photocatalytic activity of CuO/ZrO2 catalyst was investigated based on the H2 evolution from oxalic acid solution under simulated sunlight irradiation. The effects of molar ratio of CuO to ZrO2, preparation method, phase change with the calcination temperature and the durability on the photocatalytic activity of the photocatalyst were investigated in detail. It is found that the optimal activity of photocatalytic H2 evolution (2.41 mmol.h i.g-~) can be obtained when CuO/ZrO2 composite photocatalyst is synthesized by sol-gel technique and the mole ratio of CuO to ZrO2 is 40%. The activity of copper oxide supported on monoclinic ZrO2 calcined at higher temperature is much higher than that on tetragonal ZrO2 calcined at lower temperature, and the best calcination temperature is 900 ℃.展开更多
基金supported by the Nature Science Foundation of China(Grant 22262006,22068009)the Supported by Guizhou Provincial Science and Technology Projects(ZK[2023]ordinary 050,[2023]General 403)+4 种基金the Science and Technology Support Plan Projects of Guizhou Province(Grant(2018)2192)the Scientific and Technological Innovation Talents Team of Guizhou(2018-5607)the Science and Technology Foundation of Guizhou Province(20177254)the One hundred Person Project of Guizhou Province(No.20165655)the Innovation Group Project of Education Department in Guizhou Province(No.2021010)。
文摘The size of the nanoparticles and the number of oxygen vacancies have a significant effect on the catalytic activity of copper-based catalysts used for the synthesis of methanol from syngas.In this study,the authors prepared a series of catalysts CuO/ZnO/Al_(2)O_(3)/CeO_(2)(CZAC)with CuO particles of different sizes and varying number of oxygen vacancies on the surface by changing the added volume of CeO2 by using the co-precipitation method.The properties of the catalysts were characterized and their activity was evaluated by using high-pressure fixed-bed reaction equipment.The results showed that the addition of CeO_(2)to CuO/ZnO/Al_(2)O_(3)not only influenced the size of the CuO particles and metal-metal interactions,but also had an effect on the concentrations of oxygen vacancies and strongly basic sites.The presence of CuO particles of small sizes and a large numbers of oxygen vacancies on the surface of the catalyst were beneficial to its activity for the synthesis of methanol.The catalyst CZAC,when modified by 5%of CeO_(2),recorded CuO particles of the smallest size(8.9 nm),strong intermetallic interactions,and the highest concentrations of oxygen vacancies and strongly basic sites.It also exhibited the highest catalytic activity,with a space-time yield of methanol of 0.315 g/(h·g)that was higher than that of the enterprise RK-5 catalyst[0.215 g/(h·g)].
基金Project(20876039) supported by the National Natural Science Foundation of ChinaProject(09JJ3023) supported by the Natural Science Foundation of Hunan Province,China
文摘Zirconia-supported CuO (CuO/ZrO2) composite photocatalysts were successfully synthesized via citric acid-assisted sol-gel technique. For comparison, CuO/ZrO2 materials were also prepared by solid state reaction and co-precipitation method. The as-prepared powders were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM), and thermogravimetric-differential thermal analysis (TG-DTA). The photocatalytic activity of CuO/ZrO2 catalyst was investigated based on the H2 evolution from oxalic acid solution under simulated sunlight irradiation. The effects of molar ratio of CuO to ZrO2, preparation method, phase change with the calcination temperature and the durability on the photocatalytic activity of the photocatalyst were investigated in detail. It is found that the optimal activity of photocatalytic H2 evolution (2.41 mmol.h i.g-~) can be obtained when CuO/ZrO2 composite photocatalyst is synthesized by sol-gel technique and the mole ratio of CuO to ZrO2 is 40%. The activity of copper oxide supported on monoclinic ZrO2 calcined at higher temperature is much higher than that on tetragonal ZrO2 calcined at lower temperature, and the best calcination temperature is 900 ℃.