期刊文献+
共找到3,230篇文章
< 1 2 162 >
每页显示 20 50 100
胺吸收体系中CO_(2)催化解吸再生技术的研究进展
1
作者 王宁 陆诗建 +4 位作者 刘玲 梁静 刘苗苗 孙梦圆 康国俊 《化工进展》 北大核心 2025年第1期445-464,共20页
人类工业活动造成大气中CO_(2)含量逐渐增加,形成温室效应,导致全球气候异常。碳捕集、利用与封存(CCUS)技术,尤其是CO_(2)化学吸收过程,是实现大规模CO_(2)减排和遏制全球气候变化的最有效的方法之一。然而,由于CO_(2)捕集技术的高能... 人类工业活动造成大气中CO_(2)含量逐渐增加,形成温室效应,导致全球气候异常。碳捕集、利用与封存(CCUS)技术,尤其是CO_(2)化学吸收过程,是实现大规模CO_(2)减排和遏制全球气候变化的最有效的方法之一。然而,由于CO_(2)捕集技术的高能耗高成本是导致CCUS技术无法大规模推广和商业化应用的瓶颈之一。近年来,胺吸收剂催化再生技术作为一种具有大规模应用潜力的CO_(2)捕集节能新技术引起了国内外研究者的广泛关注。本文综述了胺吸收体系中CO_(2)催化解吸再生技术的研究现状,详细介绍了非均相催化剂的种类、特点、优缺点和面临的挑战,阐述了胺溶液中CO_(2)催化解吸反应机理以及Lewis酸、Br?nsted酸和碱性活性位点等在催化反应过程中的作用机制,总结了影响催化剂解吸再生性能的主要因素。最后,全面分析了催化解吸再生技术用于燃烧后CO_(2)捕集的现状,并对未来的研究趋势进行了展望。 展开更多
关键词 燃后碳捕集 化学吸收法 催化再生技术 非均相催化剂 低能耗
下载PDF
电催化O_(2)还原合成H_(2)O_(2)的催化剂及机制研究进展
2
作者 李权 隋煜君 +2 位作者 方振宇 董凯 孙旭平 《四川师范大学学报(自然科学版)》 CAS 2025年第2期154-165,F0002,共13页
过氧化氢(H_(2)O_(2))是一种环境友好型的化学品,具有强氧化能力,在消毒杀菌、环境处理、化学化工等领域被广泛应用.目前,工业生产H_(2)O_(2)主要依靠传统工艺,受困于诸多挑战,如蒽醌法能耗高、污染大,H2/O2混合法技术风险大、易爆炸.因... 过氧化氢(H_(2)O_(2))是一种环境友好型的化学品,具有强氧化能力,在消毒杀菌、环境处理、化学化工等领域被广泛应用.目前,工业生产H_(2)O_(2)主要依靠传统工艺,受困于诸多挑战,如蒽醌法能耗高、污染大,H2/O2混合法技术风险大、易爆炸.因此,迫切需要一种绿色、便捷、条件温和且可分散制取的方法来合成H_(2)O_(2).二电子氧气还原反应(2e-oxygen reduction reaction,2e-ORR)是一种以可再生电力驱动的、在温和条件下合成H_(2)O_(2)的绿色可持续的方法.4e-路径的强烈竞争降低了H_(2)O_(2)的选择性,导致产量和法拉第效率均低.因此,设计和开发高选择性的2e-ORR催化剂,以实现专一的H_(2)O_(2)合成路径,从而实现规模应用和升级工业合成路线,是目前急需解决的问题.尽管现阶段发展的2e-ORR催化剂已经取得显著进展,但距离规模化应用仍存在很大差距.基于此,对电催化2e-ORR合成H_(2)O_(2)的最新研究进展进行了综述.首先,介绍电催化合成H_(2)O_(2)的催化剂研究情况;其次,分析讨论催化机制及其影响催化性能的关键因素;最后,针对面临的关键问题提出提高电催化性能的策略及未来展望. 展开更多
关键词 H_(2)O_(2) 催化剂 O_(2)还原反应 电化学 密度泛函理论
下载PDF
负载于SiO_(2)表面的NiO/MgO催化剂用于CO_(2)甲烷化反应
3
作者 刘源 范鑫强 +1 位作者 姜雅楠 张弦 《天津大学学报(自然科学与工程技术版)》 北大核心 2025年第2期122-130,共9页
CO_(2)甲烷化反应被认为是解决CO_(2)利用难题的重要手段之一,其中NiO/MgO催化剂具有广阔的应用前景,如何提高NiO/MgO催化剂的比表面积成为其实际应用的关键.本文通过沉积-沉淀法在高比表面积的SiO_(2)载体上负载NiO/MgO催化剂,制备出了... CO_(2)甲烷化反应被认为是解决CO_(2)利用难题的重要手段之一,其中NiO/MgO催化剂具有广阔的应用前景,如何提高NiO/MgO催化剂的比表面积成为其实际应用的关键.本文通过沉积-沉淀法在高比表面积的SiO_(2)载体上负载NiO/MgO催化剂,制备出了NiO/MgO/SiO_(2)催化剂.研究了MgO含量、催化剂煅烧温度和还原温度对催化剂结构和甲烷化性能的影响.采用X射线衍射、程序升温还原、N2吸附-脱附等温线、程序升温脱附、X射线光电子能谱和场发射透射电子显微镜等技术手段对催化剂进行了表征.结果表明,合适的MgO含量既能够对SiO_(2)形成较好的阻隔以避免NiO与SiO_(2)的反应,又可与NiO形成对甲烷化有利的Ni_(1-x)Mg_(x)O固溶体.适当的煅烧温度能够在形成Ni_(1-x)Mg_(x)O固溶体的同时避免对反应不利的NiMgSiO4的形成.此外,通过调控还原温度还能够调变Ni^(0)和Ni_(1-x)Mg_(x)O的比例,从而使二者在催化体系中起到协同作用,促进CO_(2)甲烷化反应.30%MgO含量、550℃煅烧、550℃还原后的Ni30MgSi-550-550R催化剂在CO_(2)甲烷化反应催化剂性能测试中表现出最佳的催化活性,且在350℃、30000mL/(g·h)空速的测试条件下展现出200 h的稳定性,这是由于在催化剂表面具有适当的Ni^(0)/Ni_(1-x)Mg_(x)O比例和对应的充足的H2和CO_(2)活化位点.在高比表面积的SiO_(2)上负载NiO/MgO催化剂、在SiO_(2)表面进行固相反应和通过还原温度调控Ni^(0)-Ni_(1-x)Mg_(x)O活性对的策略为用于CO_(2)甲烷化反应的催化剂设计提供了一种新思路. 展开更多
关键词 CO_(2)甲烷化反应 NI基催化剂 MGO SiO_(2)
下载PDF
Bimetallic In_(2)O_(3)/Bi_(2)O_(3) Catalysts Enable Highly Selective CO_(2) Electroreduction to Formate within Ultra-Broad Potential Windows 被引量:1
4
作者 Zhongxue Yang Hongzhi Wang +7 位作者 Xinze Bi Xiaojie Tan Yuezhu Zhao Wenhang Wang Yecheng Zou Huai ping Wang Hui Ning Mingbo Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期257-264,共8页
CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet... CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR. 展开更多
关键词 bimetallic catalyst CO_(2)electrochemical reduction reaction FORMATE oxygen vacancy wide potential window
下载PDF
Porous silica nano-flowers stabilized Pt-Pd bimetallic nanoparticles as heterogeneous catalyst for efficiently synthesizing guaiacol from 2-methoxycyclohexanol
5
作者 Junbo Feng Junyan Wu +1 位作者 Dongdong Yan Yadong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期222-233,共12页
Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reduc... Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol. 展开更多
关键词 Supported catalyst Nanoparticles Dehydrogenation 2-Methoxycyclohexanol GUAIACOL
下载PDF
Realizing methanol synthesis from CO and water via the synergistic effect of Cu^(0)/Cu^(+)over Cu/ZrO_(2) catalyst
6
作者 Yuan Fang Fan Wang +10 位作者 Yang Chen Qian Lv Kun Jiang Hua Yang Huibo Zhao Peng Wang Yuyan Gan Lizhi Wu Yu Tang Xinhua Gao Li Tan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期126-134,I0004,共10页
The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized ... The optimizing utilization of ca rbon resources has drawn wide attention all over the world,while exploiting the high-efficiency catalytic routes remains a challenge.Here,a direct methanol synthesis route is realized from pure CO and H_(2)O over 10%Cu/t-ZrO_(2) catalyst,where the time yield of methanol is144.43 mmol mol_(Cu)^(-1)h^(-1)and the methanol selectivity in hydrocarbons is 100%,The Cu species highly dispersed in the t-ZrO_(2) support lead parts of them in the cationic state.The Cu^(+)sites contribute to the dissociation of H_(2)O,providing the H*source for methanol synthesis,while the formed Cu^(0) sites promote the absorption and transfer of H*during the reaction.Moreover,the H_(2)O is even a better H resource than H_(2) due to its better dissociation effectivity in this catalytic system.The present work offers a new approach for methanol synthesis from CO and new insight into the process of supplying H donor. 展开更多
关键词 H_(2)O CO METHANOL Cu-based catalysts t-ZrO_(2)
下载PDF
Metal-N_(4) model single‐atom catalyst with electroneutral quadri‐pyridine macrocyclic ligand for CO_(2) electroreduction
7
作者 Jian‐Zhao Peng Yin‐Long Li +7 位作者 Yao‐Ti Cheng Fu‐Zhi Li Bo Cao Qing Wang Xian Yue Guo‐Tao Lai Yang‐Gang Wang Jun Gu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期122-133,共12页
Metal–N–C single‐atom catalysts,mostly prepared from pyrolysis of metalorganic precursors,are widely used in heterogeneous electrocatalysis.Since metal sites with diverse local structures coexist in this type of ma... Metal–N–C single‐atom catalysts,mostly prepared from pyrolysis of metalorganic precursors,are widely used in heterogeneous electrocatalysis.Since metal sites with diverse local structures coexist in this type of material and it is challenging to characterize the local structure,a reliable structure–property relationship is difficult to establish.Conjugated macrocyclic complexes adsorbed on carbon support are well‐defined models to mimic the singleatom catalysts.Metal–N_(4) site with four electroneutral pyridine‐type ligands embedded in a graphene layer is the most commonly proposed structure of the active site of single‐atom catalysts,but its molecular counterpart has not been reported.In this work,we synthesized the conjugated macrocyclic complexes with a metal center(Co,Fe,or Ni)coordinated with four electroneutral pyridinic ligands as model catalysts for CO_(2) electroreduction.For comparison,the complexes with anionic quadri‐pyridine macrocyclic ligand were also prepared.The Co complex with the electroneutral ligand expressed a turnover frequency of CO formation more than an order of magnitude higher than that of the Co complex with the anionic ligand.Constrained ab initio molecular dynamics simulations based on the well‐defined structures of the model catalysts indicate that the Co complex with the electroneutral ligand possesses a stronger ability to mediate electron transfer from carbon to CO_(2). 展开更多
关键词 ab initio molecular dynamics CO_(2)reduction electrocatalysis model catalyst single‐atom catalyst
下载PDF
Two-dimensional C_(2)N-based single-atom catalyst with complex microenvironment for enhanced electrochemical nitrogen reduction:A descriptor-based design
8
作者 Enduo Dai Wei An +4 位作者 Ruixian Guo Xugen Shi Yunyi Li Yibo Wang Mingming Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期110-119,I0003,共11页
The catalytic descriptor with operational feasibility is highly desired towards rational design of high-performance catalyst especially the electrode/electrolyte solution interface working under mild conditions.Herein... The catalytic descriptor with operational feasibility is highly desired towards rational design of high-performance catalyst especially the electrode/electrolyte solution interface working under mild conditions.Herein,we demonstrate that the descriptorΩparameterized by readily accessible intrinsic properties of metal center and coordination is highly operational and efficient in rational design of single-atom catalyst(SAC)for driving electrochemical nitrogen reduction(NRR).Using twodimensional metal(M)-B_(x)P_(y)S_(z)N_m@C_(2)N as prototype SAC models,we reveal that^(*)N_(2)+(H~++e~-)→^(*)N_(2)H acts predominantly as the potential-limiting step(PLS)of NRR on M-B_(2)P_(2)S_(2)@C_(2)N and M-B_(1)P_(1)S_(1)N_(3)@C_(2)N regardless of the distinction in coordination microenvironment.Among the 28 screened M active sites,withΩvalues close to the optimal 4,M-B_(2)P_(2)S_(2)@C_(2)N(M=V(Ω=3.53),Mo(Ω=5.12),and W(Ω=3.92))and M-B_(1)P_(1)S_(1)N_(3)@C_(2)N(M=V(Ω=3.00),Mo(Ω=4.34),and W(Ω=3.32))yield the lowered limiting potential(U_(L))as-0.45,-0.54.-0.36,-0.58,-0.25,and-0.24 V,respectively,thus making them the promising NRR catalysts.More importantly,these SACs are located around the top of volcano-shape plot of U_(L) versusΩ,re-validatingΩas an effective descriptor for accurately predicting the high-activity NRR SACs even with complex coordination.Our study unravels the relationship between active-site structure and NRR performance via the descriptorΩ,which can be applied to other important sustainable electrocatalytic reactions involving activation of small molecules viaσ-donation andπ^(*)-backdonation mechanism. 展开更多
关键词 ELECTROCATALYSIS N_(2) reduction Single-atom catalyst DESCRIPTOR DFT
下载PDF
Elucidating the structure-activity relationship of Cu-Ag bimetallic catalysts for electrochemical CO_(2) reduction
9
作者 Qining Huang Lili Wan +1 位作者 Qingxuan Ren Jingshan Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期345-351,I0009,共8页
Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential fo... Developing bimetallic catalysts is an effective strategy for enhancing the activity and selectivity of electrochemical CO_(2) reduction reactions,where understanding the structure-activity relationship is essential for catalyst design.Herein,we prepared two Cu-Ag bimetallic catalysts with Ag nanoparticles attached to the top or the bottom of Cu nanowires.When tested in a flow cell,the Cu-Ag catalyst with Ag nanoparticles on the bottom achieved a faradaic efficiency of 54%for ethylene production,much higher than the catalyst with Ag nanoparticles on the top.The catalysts were further studied in the H-cell and zero-gap MEA cell.It was found that placing the two metals in the intensified reaction zone is crucial to triggering the tandem reaction of bimetallic catalysts.Our work elucidates the structure-activity relationship of bimetallic catalysts for CO_(2) reduction and demonstrates the importance of considering both catalyst structures and cell characteristics to achieve high activity and selectivity. 展开更多
关键词 Electrochemical CO_(2)reduction Bimetallic catalyst CU-AG Structure-activity relationship
下载PDF
Electrolyte manipulation on Cu-based electrocatalysts for electrochemical CO_(2) reduction
10
作者 Hexin Zhou Wanlong Xi +4 位作者 Peng Yang Huiting Huang Jia Tian Marina Ratova Dan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期201-222,共22页
Electrocatalytic reduction of CO_(2)is crucial for environmental sustainability and renewable energy storage,with Cu-based catalysts excelling in producing high-value C_(2+)products.However,a comprehensive analysis of... Electrocatalytic reduction of CO_(2)is crucial for environmental sustainability and renewable energy storage,with Cu-based catalysts excelling in producing high-value C_(2+)products.However,a comprehensive analysis of how specific electrolyte influences Cu-based catalysts is lacking.This review addresses this gap by focusing on how electrolytes impact surface reconstruction and the CO_(2) reduction process on Cu-based electrocatalysts,identifying specific electrolyte compositions that enhance the density and stability of active sites,and providing insights into how different electrolyte environments modulate the selectivity and efficiency of C_(2+)product formation.The review begins by exploring how electrolytes induce favorable surface reconstruction in Cu-based catalysts,affecting surface roughness through dissolution-redeposition of Cu species and interactions with halogens and molecular additives.It also covers changes in crystalline facets of Cu and Cu_(2)O,and oxidation states,highlighting transitions from Cu^(0) to Cu^(δ+)and the stabilization of Cu^(+).The role of electrolytes in the C–C coupling process is examined,emphasizing their effects in modulating mass and charge transfer,CO_(2) adsorption,intermediate evolution,and product desorption.Subsequently,the mechanisms by non-aqueous electrolytes,including organic solvents,ionic liquids,and mixed electrolytes,affecting CO_(2) reduction are analyzed,highlighting the unique advantages and challenges of each type.The review concludes by addressing current challenges,proposing solutions,and research directions,such as optimizing electrolyte composition by integrating diverse cations and anions and employing advanced in-situ characterization techniques.These insights can significantly enhance CO_(2)reduction performance on Cu-based electrocatalysts,advancing efficient and sustainable green energy technologies. 展开更多
关键词 CO_(2)reduction reaction Cu-based catalyst ELECTROLYTE Surface reconstruction Intermediates evolution
下载PDF
Non-thermal atmospheric-pressure positive pulsating corona discharge in degradation of textile dye Reactive Blue 19 enhanced by Bi_(2)O_(3) catalyst
11
作者 Milica PETROVIC Dragan RADIVOJEVIC +4 位作者 Sasa RANCEV Nena VELINOV Milos KOSTIC Danijela BOJIC Aleksandar BOJIC 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期104-113,共10页
In this work,monoclinic Bi_(2)O_(3) was applied for the first time,to the best of our knowledge,as a catalyst in the process of dye degradation by a non-thermal atmospheric-pressure positive pulsating corona discharge... In this work,monoclinic Bi_(2)O_(3) was applied for the first time,to the best of our knowledge,as a catalyst in the process of dye degradation by a non-thermal atmospheric-pressure positive pulsating corona discharge.The research focused on the interaction of the plasma-generated species and the catalyst,as well as the role of the catalyst in the degradation process.Plasma decomposition of the anthraquinone reactive dye Reactive Blue 19(RB 19) was performed in a selfmade reactor system.Bi_(2)O_(3) was prepared by electrodeposition followed by thermal treatment,and characterized by x-ray diffraction,scanning electron microscopy and energy-dispersive xray techniques.It was observed that the catalyst promoted decomposition of plasma-generated H_(2)O_(2) into ·OH radicals,the principal dye-degrading reagent,which further attacked the dye molecules.The catalyst improved the decolorization rate by 2.5 times,the energy yield by 93.4%and total organic carbon removal by 7.1%.Excitation of the catalyst mostly occurred through strikes by plasma-generated reactive ions and radical species from the air,accelerated by the electric field,as well as by fast electrons with an energy of up to 15 eV generated by the streamers reaching the liquid surface.These strikes transferred the energy to the catalyst and created the electrons and holes,which further reacted with H_(2)O_(2) and water,producing ·OH radicals.This was indentified as the primary role of the catalyst in this process.Decolorization reactions followed pseudo first-order kinetics.Production of H_(2)O_(2) and the dye degradation rate increased with increase in the input voltage.The optimal catalyst dose was 500 mg·dm^(-3).The decolorization rate was a little lower in river water compared with that in deionized water due to the side reactions of ·OH radicals with organic matter and inorganic ions dissolved in the river water. 展开更多
关键词 corona RB 19 Bi_(2)O_(3) catalyst DEGRADATION
下载PDF
Enhancing selectivity in acidic CO_(2) electrolysis:Cation effects and catalyst innovation
12
作者 Zichao Huang Tinghui Yang +4 位作者 Yingbing Zhang Chaoqun Guan Wenke Gui Min Kuang Jianping Yang 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期61-80,共20页
The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficien... The electrochemical reduction of CO_(2)(eCO_(2)R)under ambient conditions is crucial for reducing carbon emissions and achieving carbon neutrality.Despite progress with alkaline and neutral electrolytes,their efficiency is limited by(bi)carbonates formation.Acidic media have emerged as a solution,addressing the(bi)carbonates challenge but introducing the issue of the hydrogen evolu-tion reaction(HER),which reduces CO_(2) conversion efficiency in acidic environments.This review focuses on enhancing the selectivity of acidic CO_(2) electrolysis.It commences with an overview of the latest advancements in acidic CO_(2) electrolysis,focusing on product selectivity and electrocatalytic activity enhancements.It then delves into the critical factors shaping selectivity in acidic CO_(2) electrolysis,with a special emphasis on the influence of cations and catalyst design.Finally,the research challenges and personal perspectives of acidic CO_(2) electrolysis are suggested. 展开更多
关键词 ACIDIC CO_(2) electrolysis High selectivity Cation effects catalyst design Competitive HER
下载PDF
Cu-based materials for electrocatalytic CO_(2) to alcohols:Reaction mechanism,catalyst categories,and regulation strategies
13
作者 Yaru Lei Yaxin Niu +8 位作者 Xiaolong Tang Xiangtao Yu Xiubing Huang Xiaoqiu Lin Honghong Yi Shunzheng Zhao Jiaying Jiang Jiyue Zhang Fengyu Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期593-611,I0013,共20页
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re... Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols. 展开更多
关键词 Electrocatalytic CO_(2)RR Cu-based catalyst ALCOHOLS Reaction mechanism Regulation strategies
下载PDF
Sabatier principle guiding the design of cathode catalysts for Li-CO_(2) batteries
14
作者 Haonan Xie Yimin Zhang +4 位作者 Biao Chen Chunnian He Chunsheng Shi Enzuo Liu Naiqin Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期585-592,I0012,共9页
The Sabatier principle has been widely used for designing electrocatalysts for energy conversion applications,but it is rarely mentioned in the research of cathode catalyst of Li-CO_(2) batteries.In our work,the"... The Sabatier principle has been widely used for designing electrocatalysts for energy conversion applications,but it is rarely mentioned in the research of cathode catalyst of Li-CO_(2) batteries.In our work,the"volcanic"relationship between the catalytic activity and the adsorption energy of the catalyst to the intermediates is first demonstrated based on the first-principles calculation,which meets the Sabatier principle and can be used to design the cathode catalysts.The increases in the number of nitrogenvacancy in WN shift the d-band center and increase the interaction with the reactants.The catalytic activity increases first and then decreases with the increase of adsorption energy,which was proved in the experiment.The optimal catalyst for moderate adsorption of intermediate makes the thin LiaCO_(3) distribute evenly.It exhibits a median voltage difference of 0.68 V and an energy efficiency of 84.33%at20μA cm^(-2)with a limited capacity of 200μA h cm^(-2). 展开更多
关键词 Sabatier principle Bidirectional catalyst Transition metal nitrides Nitrogen-vacancy Li-CO_(2) batteries
下载PDF
Polygonal mesopores microflower catalysts for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene to 2-nitro-4-methylsulfonylbenzoic acid in a continuous-flow microreactor
15
作者 Jianzhi Wang Xugen Li +6 位作者 Cheng Zhang Yuan Pu Jiawu Liu Jie Liu Yanping Liu Xiao Lin Faquan Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期212-221,共10页
The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium prese... The development of efficient systems for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene(NMST)to 2-nitro-4-methylsulfonyl benzoic acid(NMSBA)with atmospheric air or molecular oxygen in alkaline medium presents a significant challenge for the chemical industry.Here,we report the synthesis of FeOOH/Fe_(3)O_(4)/metal-organic framework(MOF)polygonal mesopores microflower templated from a MIL-88B(Fe)at room temperature,which exposes polygonal mesopores with atomistic edge steps and lattice defects.The obtained FeOOH/Fe_(3)O_(4)/MOF catalyst was adsorbed onto glass beads and then introduced into the microchannel reactor.In the alkaline environment,oxygen was used as oxidant to catalyze the oxidation of NMST to NMSBA,showing impressive performance.This sustainable system utilizes oxygen as a clean oxidant in an inexpensive and environmentally friendly NaOH/methanol mixture.The position and type of substituent critically affect the products.Additionally,this sustainable protocol enabled gram-scale preparation of carboxylic acid and benzyl alcohol derivatives with high chemoselectivities.Finally,the reactions can be conducted in a pressure reactor,which can conserve oxygen and prevent solvent loss.Moreover,compared with the traditional batch reactor,the self-built microchannel reactor can accelerate the reaction rate,shorten the reaction time,and enhance the selectivity of catalytic oxidation reactions.This approach contributes to environmental protection and holds potential for industrial applications. 展开更多
关键词 2-nitro-4-methylsulfonylbenzoic 2-nitro-4-methylsulfonyltoluene FeOOH/Fe3O4/MOF catalyst MICROREACTOR Oxidation
下载PDF
Tuning the product selectivity of dimethyl oxalate hydrogenation over WO_(x) modified Cu/SiO_(2) catalysts
16
作者 Zheng Li Zhuo Ma +9 位作者 Yihui Li Ziang Zhao Yuan Tan Ziyin Liu Xingkun Chen Nian Lei Huigang Wang Wei Lu Hejun Zhu Yunjie Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期128-138,I0004,共12页
Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethyle... Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethylene glycol(EG)→ethanol(ET))and"MA route"(DMO→MG→methyl acetate(MA))were proposed over traditional Cu based catalysts and Mo-based or Fe-based catalysts,respectively.Herein,tunable yield of ET(93.7%)and MA(72.1%)were obtained through different reaction routes over WO_(x) modified Cu/SiO_(2) catalysts,and the corresponding reaction route was further proved by kinetic study and in-situ DRIFTS technology.Mechanistic studies demonstrated that H_(2) activation ability,acid density and Cu-WO_(x) interaction on the catalysts were tuned by regulating the surface W density,which resulted in the different reaction pathway and product selectivity.What's more,high yield of MA produced from DMO hydrogenation was firstly reported with the H_(2) pressure as low as 0.5 MPa. 展开更多
关键词 ETHANOL Dimethyl oxalate Selective hydrogenation Methyl acetate WCu/SiO_(2)catalyst
下载PDF
Molecular engineering binuclear copper catalysts for selective CO_(2) reduction to C_(2) products
17
作者 Qi Zhao Kai Lei +2 位作者 Bao Yu Xia Rachel Crespo-Otero Devis Di Tommaso 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期166-173,I0005,共9页
Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding th... Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding the copper metal centres.This investigation,employing density functional theory calculations,focuses on a novel family of binuclear Cu molecular catalysts.The modulation of their coordination configuration through the introduction of organic groups aims to assess their efficacy in converting CO_(2) to C_(2)products.Our findings highlight the crucial role of chemical valence state in shaping the characteristics of binuclear Cu catalysts,consequently influencing the eCO_(2)R behaviour,Notably,the Cu(Ⅱ)Cu(Ⅱ)macrocycle catalyst exhibits enhanced suppression of the hydrogen evolution reaction(HER),facilitating proton trans fer and the eCO_(2)R process.Fu rthermore,we explo re the impact of diverse electro n-withdrawing and electron-donating groups coordinated to the macrocycle(R=-F,-H,and-OCH_3)on the electron distribution in the molecular catalysts.Strategic placement of-OCH_3 groups in the macrocycles leads to a favourable oxidation state of the Cu centres and subsequent C-C coupling to form C_(2) products.This research provides fundamental insights into the design and optimization of binuclear Cu molecular catalysts for the electrochemical conversion of CO_(2) to value-added C_(2) products. 展开更多
关键词 Molecular catalyst design Selective CO_(2)reduction C_(2)products Density functional theory calculations
下载PDF
CO_(2)-assisted oxidation dehydrogenation of light alkanes over metal-based heterogeneous catalysts
18
作者 Yingbin Zheng Xinbao Zhang +4 位作者 Junjie Li Jie An Longya Xu Xiujie Li Xiangxue Zhu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期40-69,共30页
Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derive... Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts. 展开更多
关键词 Light alkanes dehydrogenation CO_(2)utilization Metal-based catalysts Light olefins Coupling reaction
下载PDF
Preparation of palladium-based catalyst by plasma-assisted atomic layer deposition and its applications in CO_(2) hydrogenation reduction
19
作者 唐守贤 田地 +4 位作者 李筝 王正铎 刘博文 程久珊 刘忠伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期31-39,共9页
Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is report... Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively. 展开更多
关键词 atomic layer deposition CO_(2)hydrogenation palladium based catalyst
下载PDF
Hydrogenation of CO_(2) to p-xylene over ZnZrO_(x)/hollow tubular HZSM-5 tandem catalyst
20
作者 Haifeng Tian Zhiyu Chen +3 位作者 Haowei Huang Fei Zha Yue Chang Hongshan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期725-737,共13页
The conversion of CO_(2) into specific aromatics by modulating the morphology of zeolites is a promising strategy.HZSM-5 zeolite with hollow tubular morphology is reported.The morphology of zeolite was precisely contr... The conversion of CO_(2) into specific aromatics by modulating the morphology of zeolites is a promising strategy.HZSM-5 zeolite with hollow tubular morphology is reported.The morphology of zeolite was precisely controlled,and the acid sites on its outer surface were passivated by steam-assisted crystallization method,so that the zeolite exhibits higher aromatic selectivity than sheet HZSM-5 zeolite and greater p-xylene selectivity than chain HZSM-5 zeolite.The tandem catalyst was formed by combining hollow tubular HZSM-5 zeolites with ZnZrO_(x)metal oxides.The para-selectivity of p-xylene reached 76.2%at reaction temperature of 320℃,pressure of 3.0 MPa,and a flow rate of 2400 mL g^(-1)h^(-1)with an H_(2)/CO_(2) molar ratio of 3/1.Further research indicates that the high selectivity of p-xylene is due to the pore structure of hollow tubular HZSM-5 zeolite,which is conducive to the formation of p-xylene.Moreover,the passivation of the acid site located on the outer surface of zeolite effectively prevents the isomerization of p-xylene.The reaction mechanism of CO_(2) hydrogenation over the tandem catalyst was investigated using in-situ diffuse reflectance Fourier transform infrared spectroscopy and density functional theory.The results showed that the CO_(2) to p-xylene followed a methanol-mediated route over ZnZrO_(x)/hollow tubular HZSM-5 tandem catalysts.In addition,the catalyst showed no significant deactivation in the 100 h stability test.This present study provides an effective strategy for the design of catalysts aimed at selectively preparing aromatics through CO_(2)hydrogenation. 展开更多
关键词 Hollow tubular HZSM-5 zeolite Tandem catalyst CO_(2)hydrogenation P-XYLENE Reaction mechanism
下载PDF
上一页 1 2 162 下一页 到第
使用帮助 返回顶部