期刊文献+
共找到18,542篇文章
< 1 2 250 >
每页显示 20 50 100
Thermal pretreatment of willow branches impacts yield and pore development of activated carbon in subsequent activation with ZnCl_(2) via modifying cellulose structure
1
作者 Linghui Kong Chao Li +7 位作者 Runxing Sun Shu Zhang Yi Wang Jun Xiang Song Hu Dong Wang Chuanjun Leng Xun Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期227-237,共11页
Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce d... Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce dehydration and/or aromatization to change the structure of cellulose/hemicellulose.This might interfere with evolution of structures of AC,which was investigated herein via thermal pretreatment of willow branch(WB)from 200 to 360℃and the subsequent activation with ZnCl_(2) at 550℃.The results showed that thermal pretreatment at 360℃(WB-360)could lead to substantial pyrolysis to form biochar,with a yield of 31.9%,accompanying with nearly complete destruction of cellulose crystals and remarkably enhanced aromatic degree.However,cellulose residual in WB-360 could still be activated to form AC-360 with specific surface area of 1837.9 m~2·g^(-1),which was lower than that in AC from activation of untreated WB(AC-blank,2077.8 m~2·g^(-1)).Nonetheless,the AC-200 from activation of WB-200 had more developed pores(2113.9 m~2·g^(-1))and superior capability for adsorption of phenol,due to increased permeability of ZnCl_(2) to the largely intact cellulose structure in WB-200.The thermal pretreatment did increase diameters of micropores of AC but reduced the overall yield of AC(26.8%for AC-blank versus 18.0%for AC-360),resulting from accelerated cracking but reduced intensity of condensation.In-situ infrared characterization of the activation showed that ZnCl_(2) mainly catalyzed dehydration,dehydrogenation,condensation,and aromatization but not cracking,suppressing the formation of derivatives of cellulose and lignin in bio-oil.The thermal pretreatment formed phenolic-OH and C=O with higher chemical innerness,which changed the reaction network in activation,shifting morphology of fibrous structures in AC-blank to“melting surface”in AC-200 or AC-280. 展开更多
关键词 Thermal pretreatment activation with ZnCl_(2) Willow branch activated carbon Biochar
下载PDF
Ultra-high specific surface area activated carbon from Taihu cyanobacteria via KOH activation for enhanced methylene blue adsorption
2
作者 Yifang Mi Wenqiang Wang +4 位作者 Sen Zhang Yalong Guo Yufeng Zhao Guojin Sun Zhihai Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期106-116,共11页
Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs ... Cyanobacteria-based activated carbon(CBAC)was successfully prepared by pyrolysis-activation of Taihu cyanobacteria.When the impregnation ratio and activated temperature were 2 and 800-C,respectively,the optimal CBACs possessed an ultra-high specific surface(2178.90 m^(2)·g^(-1))and plenty of micro-and meso-pores,as well as a high pore volume(1.01 cm^(3)·g^(-1)).Ascribed to ultra-high surface area,π-π interaction,electrostatic interaction,as well as hydrogen-bonding interactions,the CBACs displayed huge superiority in efficient dye removal.The saturated methylene blue adsorption capacity by CBACs could be as high as 1143.4 mg·g^(-1),superior to that of other reported biomass-activated carbons.The adsorption was endothermic and modeled well by the pseudo-second-order kinetic,intra-particle diffusion,and Langmuir models.This work presented the effectiveness of Taihu cyanobacteria adsorbent ascribed to its super large specific surface area and high adsorption ability. 展开更多
关键词 activated carbon BIOMASS Dye adsorption Taihu cyanobacteria
下载PDF
High adsorption selectivity of activated carbon and carbon molecular sieve boosting CO_(2)/N_(2) and CH_(4)/N_(2) separation
3
作者 Siang Chen Wenling Wu +4 位作者 Zhaoyang Niu Deqi Kong Wenbin Li Zhongli Tang Donghui Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期282-297,共16页
Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In... Flue gas and coal bed methane are two important sources of greenhouse gases.Pressure swing adsorption process has a wide range of application in the field of gas separation,and the selection of adsorbent is crucial.In this regard,in order to assess the better adsorbent for separating CO_(2) from flue gas and CH_(4) from coal bed methane,adsorption isotherms of CO_(2),CH_(4) and N_(2) on activated carbon and carbon molecular sieve are measured at 303.15,318.15 and 333.15 K,and up to 250 kPa.The experimental data fit better with Langmuir 2 compared to Langmuir 3 and Langmuir-Freundlich models,and Clausius-Clapeyron equation was used to calculate the isosteric heat.Both the order of the adsorbed amount and the adsorption heat on the two adsorbents are CO_(2)>CH_(4)>N_(2).The adsorption kinetics are calculated by the pseudo-first kinetic model,and the order of adsorption rates on activated carbon is N_(2)-CH_(4)>CO_(2),while on carbon molecular sieve,it is CO_(2)-N_(2)>CH_(4).It is shown that relative molecular mass and adsorption heat are the primary effect on kinetics for activated carbon,while kinetic diameter is the main resistance factor for carbon molecular sieve.Moreover,the adsorption selectivity of CH_(4)/N_(2) and CO_(2)/N_(2) were estimated with the ideal adsorption solution theory,and carbon molecular sieve performed best at 318.15 K for both CO_(2) and CH_(4) separation.The study suggested that activated carbon is a better choice for separating flue gas and carbon molecular sieve can be a strong candidate for separating coal bed methane. 展开更多
关键词 activated carbon carbon molecular sieve Adsorbent evaluation Adsorption equilibrium and kinetics Heat of adsorption SELECTIVITY
下载PDF
Fate and Behavior of Tetracycline Resistance Genes in Activated Carbon Adsorption
4
作者 Sri Anggreini Alma Rizky Aurellya +1 位作者 Wenqing Li Fusheng Li 《Journal of Water Resource and Protection》 CAS 2024年第1期1-16,共16页
The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using... The accessibility of tetracycline resistance gene (tetG) into the pores of activated carbon (AC), as well as the impact of the pore size distribution (PSD) of AC on the uptake capacity of tetG, were investigated using eight types of AC (four coal-based and four wood-based). AC showed the capability to admit tetG and the average reduction of tetG for coal-based and wood-based ACs at the AC dose of 1 g·L<sup>-1</sup> was 3.12 log and 3.65 log, respectively. The uptake kinetic analysis showed that the uptake of the gene followed the pseudo-second-order kinetics reaction, and the uptake rate constant for the coal-based and wood-based ACs was in the range of 5.97 × 10<sup>-12</sup> - 4.64 × 10<sup>-9</sup> and 7.02 × 10<sup>-11</sup> - 1.59 × 10<sup>-8</sup> copies·mg<sup>-1</sup>·min<sup>-1</sup>, respectively. The uptake capacity analysis by fitting the obtained experiment data with the Freundlich isotherm model indicated that the uptake constant (K<sub>F</sub>) values were 1.71 × 10<sup>3</sup> - 8.00 × 10<sup>9</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for coal-based ACs and 7.00 × 10<sup>8</sup> - 3.00 × 10<sup>10</sup> (copies·g<sup>-1</sup>)<sup>1-1/n</sup> for wood-based ones. In addition, the correlation analysis between K<sub>F</sub> values and pore volume as well as pore surface at different pore size regions of ACs showed that relatively higher positive correlation was found for pores of 50 - 100 Å, suggesting ACs with more pores in this size region can uptake more tetG. The findings of this study are valuable as reference for optimizing the adsorption process regarding antibiotic resistance-related concerns in drinking water treatment. 展开更多
关键词 Antibiotic Resistance Genes ADSORPTION activated carbon Drinking Water Treatment
下载PDF
Achieving high-efficient photocatalytic persulfate-activated degradation of tetracycline via carbon dots modified MIL-101(Fe)octahedrons
5
作者 Hao Yuan Xinhai Sun +2 位作者 Shuai Zhang Weilong Shi Feng Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期298-309,共12页
The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)... The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts. 展开更多
关键词 carbon dots MIL-101(Fe) PHOTOCATALYTIC Persulfate activation Tetracycline degradation
下载PDF
Adsorption of Malachite Green Using Activated Carbon from Mangosteen Peel: Optimization Using Box-Behnken Design
6
作者 Nabila Eka Yuningsih Latifa Ariani +4 位作者 Suprapto Suprapto Ita Ulfin Harmami Harmami Hendro Juwono Yatim Lailun Ni’mah 《Journal of Renewable Materials》 EI CAS 2024年第5期981-992,共12页
In this research,activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator.The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate.M... In this research,activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator.The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate.Mala-chite green dye waste is a toxic and non-biodegradable material that damages the environment.Optimization of adsorption processes was carried out using Response Surface Methodology(RSM)with a Box-Behnken Design(BBD).The synthesized activated carbon was characterized using FTIR and SEM instruments.The FTIR spectra confirmed the presence of a sulfonate group(-SO_(3)H)in the activated carbon,indicating that the activation pro-cess using sulfuric acid was successful.SEM characterization shows that activated carbon has porous morphology.Optimization was carried out for three adsorption parameters,namely contact time(20,60,and 120 min),adsor-bent mass(0.005,0.025,and 0.05 g),and initial concentration of malachite green solution(5,50,and 100 mg·L^(-1)).The concentration of the malachite green solution was determined using a UV-Vis spectrophotometer at the max-imum wavelength of malachite green,618 nm.The optimum of malachite green adsorption using mangosteen peel activated carbon was obtained at a contact time of 80 min,an adsorbent mass of 0.032 g,and malachite green initial concentration of 25 mg·L^(-1),with a maximum removal percentage and maximum adsorption capacity of 93.66%and 19.345 mg·g^(-1),respectively. 展开更多
关键词 Response surface methodology DYES activated carbon experimental design
下载PDF
Improving the Quality of Baobab Oil by Filtration on Activated Carbon from the Fruit Capsules
7
作者 Edouard Mbarick Ndiaye Alioune Sow +5 位作者 Papa Guédel Faye Kalidou Ba Mouhamed Ndoye Omar Ibn Khatab Cisse Nicolas Cyrille Ayessou Mady Cisse 《Journal of Materials Science and Chemical Engineering》 2024年第1期69-83,共15页
The baobab, Adansonia digitata L., plays an important role in the economy of local populations. Nowadays, baobab seed oil is highly prized for its many cosmetic and therapeutic applications, and for its composition of... The baobab, Adansonia digitata L., plays an important role in the economy of local populations. Nowadays, baobab seed oil is highly prized for its many cosmetic and therapeutic applications, and for its composition of unsaturated fatty acids, sterols, and tocopherols. However, it undergoes numerous reactions during production, processing, transport, and storage, leading to undesirable products that make it unstable. The aim of this study was to provide local processors with innovative solutions for the treatment of unrefined vegetable oils. To this end, an experimental device for filtering crude oil on activated carbon made from fruit capsules was designed. The results obtained after the treatment show a significant decrease at (p < 5%) in acid value (1.62 to 0.58 mg KOH/g), peroxide value (4.40a to 0.50c mEqO<sub>2</sub>/Kg), chlorophyll concentration (1.81 to 0.50 mg/Kg) and primary and secondary oxidation products. According to these results, activated carbon’s adsorptive power eliminates oxidation products and certain pro-oxidants such as chlorophyll, resulting in a cleaner, more stable and better storable oil. 展开更多
关键词 activated carbon Adansonia digitata L. Baobab Fruit Baobab Oil Stability
下载PDF
Effects of desert plant communities on soil enzyme activities and soil organic carbon in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia,China
8
作者 SHEN Aihong SHI Yun +8 位作者 MI Wenbao YUE Shaoli SHE Jie ZHANG Fenghong GUO Rui HE Hongyuan WU Tao LI Hongxia ZHAO Na 《Journal of Arid Land》 SCIE CSCD 2024年第5期725-737,共13页
It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s... It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems. 展开更多
关键词 proluvial fan desert plant community soil enzyme activity particulate organic carbon mineral-associated organic carbon Helan Mountain
下载PDF
In-situ construction of abundant active centers on hierarchically porous carbon electrode toward high-performance phosphate electrosorption: Synergistic effect of electric field and capture sites
9
作者 Peng Zhang Fukuan Li +6 位作者 Mingming He Silu Huo Xueli Zhang Benqiang Cen Dezhi Fang Kexun Li Hao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期126-137,共12页
Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.Howev... Phosphate removal is crucial for eutrophication control and water quality improvement.Electro-assisted adsorption,an eco-friendly elec-trosorption process,exhibited a promising potential for wastewater treatment.However,there are few works focused on phosphate electro-sorption,and reported electrodes cannot attach satisfactory removal capacities and rates.Herein,electro-assisted adsorption of phosphate via in-situ construction of La active centers on hierarchically porous carbon(LaPC)has been originally demonstrated.The resulted LaPC composite not only possessed a hierarchically porous structure with uniformly dispersed La active sites,but also provided good conductivity for interfacial electron transfer.The LaPC electrode achieved an ultrahigh phosphate electrosorption capability of 462.01 mg g^(-1) at 1 V,outperforming most existing electrodes.The superior phosphate removal performance originates from abundant active centers formed by the coupling of electricfield and capture sites.Besides,the stability and selectivity toward phosphate capture were maintained well even under comprehensive conditions.Moreover,a series of kinetics and isotherms models were employed to validate the electrosorption process.This work demonstrates a deep understanding and promotes a new level of phosphate electrosorption. 展开更多
关键词 Electro-assisted adsorption ELECTROSORPTION Phosphate removal active centers MOF-derived carbon
下载PDF
Activity Data and Emission Factor for Forestry and Other Land Use Change Subsector to Enhance Carbon Market Policy and Action in Malawi
10
作者 Edward Missanjo Henry Kadzuwa 《Journal of Environmental Protection》 2024年第4期401-414,共14页
Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Fo... Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Forestry and Other Land Use Change (FOLU) subsector in Malawi. The results indicate that “forestland to cropland,” and “wetland to cropland,” were the major land use changes from the year 2000 to the year 2022. The forestland steadily declined at a rate of 13,591 ha (0.5%) per annum. Similarly, grassland declined at the rate of 1651 ha (0.5%) per annum. On the other hand, cropland, wetland, and settlements steadily increased at the rate of 8228 ha (0.14%);5257 ha (0.17%);and 1941 ha (8.1%) per annum, respectively. Furthermore, the results indicate that the “grassland to forestland” changes were higher than the “forestland to grassland” changes, suggesting that forest regrowth was occurring. On the emission factor, the results interestingly indicate that there was a significant increase in carbon sequestration in the FOLU subsector from the year 2011 to 2022. Carbon sequestration increased annually by 13.66 ± 0.17 tCO<sub>2</sub> e/ha/yr (4.6%), with an uncertainty of 2.44%. Therefore, it can be concluded that there is potential for a Carbon market in Malawi. 展开更多
关键词 activity Data Emission Factor Climate Change Forestland carbon Market
下载PDF
Preparation of activated carbon from sunflower straw through H_(3)PO_(4) activation and its application for acid fuchsin dye adsorption 被引量:1
11
作者 Wen-de Zhao Li-ping Chen Yan Jiao 《Water Science and Engineering》 EI CAS CSCD 2023年第2期192-202,共11页
With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared... With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared by the one-step activation method, with sunflower straw (SS) used as the raw material and H3PO4 used as the activator. Four types of SSAC were prepared with impregnation ratios (weight of SS to weight of H3PO4) of 1:1, 1:2, 1:3, and 1:5, corresponding to SSAC1, SSAC2, SSAC3, and SSAC4, respectively. The adsorption process of acid fuchsin (AF) in water using the four types of SSAC was studied. The results showed that the impregnation ratio significantly affected the structure of the materials. The increase in the impregnation ratio increased the specific surface area and pore volume of SSAC and improved the adsorption capacity of AF. However, an impregnation ratio that was too large led to a decrease in specific surface area. SSAC3, with an impregnation ratio of 1:3, had the largest specific surface area (1 794.01 m2/g), and SSAC4, with an impregnation ratio of 1:5, exhibited the smallest microporosity (0.052 7 cm3/g) and the largest pore volume (2.549 cm3/g). The adsorption kinetics of AF using the four types of SSAC agreed with the quasi-second-order adsorption kinetic model. The Langmuir isotherm model was suitable to describe SSAC3 and SSAC4, and the Freundlich isotherm model was appropriate to describe SSAC1 and SSAC2. The result of thermodynamics showed that the adsorption process was spontaneous and endothermic. At 303 K, SSAC4 showed a removal rate of 97.73% for 200-mg/L AF with a maximum adsorption capacity of 2 763.36 mg/g, the highest among the four types of SSAC. This study showed that SAAC prepared by the H3PO4-based one-step activation method is a green and efficient carbon material and has significant application potential for the treatment of dye-containing wastewater. 展开更多
关键词 Acid fuchsin activated carbon Adsorption Sunflower straw Phosphoric acid activation Impregnation ratio
下载PDF
Adsorption behavior of activated carbon for the elimination of zearalenone during bleaching process of corn oil 被引量:2
12
作者 Yuyuan Hu Chuanguo Ma +3 位作者 Weifeng Huang Shujing Guo Tong Wang Jun Liu 《Grain & Oil Science and Technology》 2023年第1期24-33,共10页
Zearalenone is a mycotoxin produced by Fusarium species.It frequently contaminates cereals used for foods or animal feeds,especially deposited in crude corn oil.Certain amounts of zearalenone can be removed during ref... Zearalenone is a mycotoxin produced by Fusarium species.It frequently contaminates cereals used for foods or animal feeds,especially deposited in crude corn oil.Certain amounts of zearalenone can be removed during refining processes.In this study,we studied the influence of activated carbon and six industial absorbents(zeolite,diatomite,attapulgite,perlite,montmorillonite and activated clay)on the elimination of zearalenone during bleaching process of corn oil and explored the absorption mechanism of activated carbon.Results showed that activated carbon had an excellent adsorption capacity of zearalenone compared with the other six industrial adsorbents.For activated carbon,a high removal rate of zearalenone(exceeding 83%)from heavily zearalenone-polluted corn oil was achieved and the removal rate of zearalenone was kept above 60%after five regeneration cycles.The research on the adsorption mechanism of activated carbon showed that Freundlich adsorption isotherm model and pseudo-second-order kinetic model could well described the adsorption process.The thermodynamic study demonstrated that adsorption process was spontaneous and exothermic.Fourier transform infrared spectroscopy and Raman spectroscopy further revealed that activated carbon was effectively combined with zearalenone viaπ-πinteraction.Thus,activated carbon is an efficient and suitable adsorbent to control the levels of zearalenone during bleaching process of corn oil.This study not only proposed a systematic research scheme for the mechanism study of activated carbon for the elimination of zearalenone in corn oil,but also provided the scientific basis for developing effective methods to eliminate zearalenone in refined vegetable oils. 展开更多
关键词 ZEARALENONE Adsorbents activated carbon Adsorption kinetics Corn oil
下载PDF
Aluminum and Activated Alumina Powder Additions on Microwave Synthesis of Al_(4)SiC_(4)
13
作者 WANG Li LIU Shijie +6 位作者 WEI Haoyu MA Juanjuan DONG Binbin GENG Shangrui YAN Miaoxin QIN Feng GUO Yusen 《China's Refractories》 CAS 2024年第1期44-48,共5页
Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw mat... Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance. 展开更多
关键词 aluminum powder activated alumina powder microwave synthesis Al_(4)SiC_(4) magnesia carbon bricks
下载PDF
Surface Modification of Bamboo-based Activated Carbon for Methylene Blue Removal 被引量:1
14
作者 Derong Tang Ruonan Zhao +2 位作者 Feiyun Li Tianying Chen Yanjun Tang 《Paper And Biomaterials》 CAS 2023年第1期12-25,共14页
The feasibility of biomass-based activated carbon has received tremendous attention owing to its excellent properties,such as insensitivity,good adsorption performance,and potential to reduce the strong dependence on ... The feasibility of biomass-based activated carbon has received tremendous attention owing to its excellent properties,such as insensitivity,good adsorption performance,and potential to reduce the strong dependence on non-reproducible precursors.In this study,bamboo-based activated carbon(BAC)was used as the raw material for methylene blue(MB)removal.Cetyltrimethylammonium bromide(CTAB),sodium dodecyl sulfate(SDS),and sodium dodecylbenzene sulfonate(SDBS)were used as BAC surface modifiers.The morphologies and structures of the samples were characterized.In addition,the effects of the surfactant type and concentration on the adsorption-based removal of MB from aqueous solutions by the modified BAC were systematically investigated.For the 0.2 g/L MB solution,the MB removal rate reached 99.7%when the concentration of CTAB was 0.25 g/L.Moreover,the kinetic model curve of 0.25 g/L CTAB-modified BAC(CAC)was consistent with the Freundlich isotherm model.This research work enriches the technical pathway of modification and application of activated carbon,which is not only beneficial for realizing the high-value utilization of biomass bamboo resources but also can play an active role in guiding the treatment of MB-containing wastewater. 展开更多
关键词 bamboo-based activated carbon SURFACTANT methylene blue adsorption performance
下载PDF
Process analysis of temperature swing adsorption and temperature vacuum swing adsorption in VOCs recovery from activated carbon
15
作者 Yadong Li Yuanhui Shen +4 位作者 Zhaoyang Niu Junpeng Tian Donghui Zhang Zhongli Tang Wenbin Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期346-360,共15页
In order to better guide the design of industrial process for purification and recovery of VOCs,temperature swing adsorption(TSA)and temperature vacuum swing adsorption(TVSA)process for VOCs purification and recovery ... In order to better guide the design of industrial process for purification and recovery of VOCs,temperature swing adsorption(TSA)and temperature vacuum swing adsorption(TVSA)process for VOCs purification and recovery were studied systematically with activated carbon adsorbent.The adsorption and desorption behaviors of benzene on activated carbon in above two processes were investigated systematically.Effects of operating parameters on process performances were further analyzed,including as regeneration temperature,purging feed ratio and hot–cold purging ratio.The results showed that the increase of hot–cold purging ratio(HP/CP)could obtain the same regeneration effect as the increase of desorption temperature.Increasing the feed purge ratio without increasing the hot–cold purging ratio is not conducive to bed regeneration,because a large number of cold purge gases cannot utilize the residual heat of temperature wave,thus reducing the desorption effect of the cooling step on the bed.In addition,the vacuum step can enhance the regeneration ability of hot nitrogen to the bed at the same regeneration temperature,making the bed regeneration of TVSA process more thorough.Temperature in the middle and lower part of the bed in TVSA process was higher and the regeneration was more thorough.In conclusion,TVSA has more obvious advantages than TSA in terms of energy consumption,hot or cold purge volume and bed regeneration. 展开更多
关键词 VOCS TSA TVSA activated carbon BENZENE
下载PDF
Molecular Simulation of Methane Adsorption in Different Micro Porous Activated Carbons at Different Temperatures
16
作者 Rugarabamu John Rwiza 赵东风 +1 位作者 SONG Kunli LI Shi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期1-11,共11页
We employed the previously developed micro porous activated carbon models of different pore sizes ranges of 9-11?,10-12?,and 13-16?that were constructed by molecular simulation method based on a random packing of plat... We employed the previously developed micro porous activated carbon models of different pore sizes ranges of 9-11?,10-12?,and 13-16?that were constructed by molecular simulation method based on a random packing of platelets of carbon sheets,functionalized with oxygen containing groups,to study the adsorption behavior of methane molecules.In studying methane adsorption behavior,we used Grand Canonical Monte Carlo and Molecular Dynamics methods at different temperatures of 273.15,298.15 and303.15 K.Adsorption isotherms,isosteric heats of adsorption,adsorption energy distributions and porosity changes of the models during adsorption process were analyzed and discussed.Furthermore,radial distribution Functions,relative distribution and diffusion coefficients of methane molecules in activated carbon models at different temperatures were studied.After the analysis,the main results indicated that large micro pores activated carbons were favorable for storing methane at lower temperatures and small micro pores were the most favorable for adsorbing methane molecules at higher temperatures.Interestingly,the developed model structures showed high capacities to store methane molecule at ambient temperatures and low pressure. 展开更多
关键词 Molecular simulation activated carbon methane adsorption MD GCMC
下载PDF
Chemically activated carbon nanofibers for adsorptive removal of bisphenol-A:Batch adsorption and breakthrough curve study
17
作者 Wenming Hao Basma I.Waisi +1 位作者 Timothy M.Vadas Jeffrey R.McCutcheon 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期248-259,共12页
Activated carbon nanofibers(ACNFs)with small diameter can significantly increase the accessibility of intra pores and accelerate adsorption of molecules from water.In this study,ACNFs were made by blending K_(2)CO_(3)... Activated carbon nanofibers(ACNFs)with small diameter can significantly increase the accessibility of intra pores and accelerate adsorption of molecules from water.In this study,ACNFs were made by blending K_(2)CO_(3)or ZnCl_(2)as the activating agent into the polyacrylonitrile(PAN)in dimethylformamide solution for electrospinning prior to pyrolysis.Bisphenol-A(BPA),an endocrine disruption pollutant,is widely applied in the production of polycarbonate plastics and epoxy resins.Accordingly,BPA is often used as a model contaminant commonly removed via adsorption.Batch adsorption studies were used to evaluate the kinetics and adsorption capacity of the ACNFs.Redlich-Peterson(R-P)and Langmuir models were found to fit the isotherm of BPA adsorption better than Freundlich model,showing the homogeneous nature of the PAN originated ACNFs.The adsorption kinetics was better described by the pseudo second-order model than that by the pseudo first-order model.The fitting by intraparticle diffusion model indicates the adsorption of BPA onto ACNFs is mainly controlled by pore diffusion.High pH value and ionic strength reduced BPA adsorption from aqueous solution.The breakthrough curves studied in two different fixed bed systems(cross flow bed system and packed flow bed system)confirmed the scalability of BPA removal by ACNFs in dynamic adsorption processes.The modified dose-response model predicted well the fixed-bed outlet concentration profiles. 展开更多
关键词 activated carbon nanofibers(ACNFs) Chemical activation Bisphenol-A(BPA) Fixed bed ADSORPTION
下载PDF
A Simple Method for Preparing CuCl/Activated Carbon for Selective CO Adsorption from Hydrogen
18
作者 Liu Di Wang Qianqian +3 位作者 Huang Jiaxing Zheng Jinyu Jin Ye Su Shikun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期115-122,共8页
Carbon monoxide(CO)is an impurity gas that can poison the precious metal catalysts of hydrogen fuel cells,so it is necessary to separate CO from hydrogen.In this paper,an isovolumetric impregnation method was develope... Carbon monoxide(CO)is an impurity gas that can poison the precious metal catalysts of hydrogen fuel cells,so it is necessary to separate CO from hydrogen.In this paper,an isovolumetric impregnation method was developed to prepare Cu(I)-supported activated carbon(AC),which is simple and easy to industrialize.The prepared cuprous chloride CuCl/AC adsorbent displayed a high CO adsorption capacity of 82.1 cm^(3)/g and a high CO/H_(2) separation factor of 20 at 20 bar and 298 K.This material can adsorb and remove CO from CO/H_(2) mixed gas(5μL/L CO-balanced H_(2))to less than 0.2μL/L under dynamic flow conditions,and showed excellent regeneration performance.The results show that CuCl/AC is an effective adsorbent for separating trace CO in high-purity hydrogen. 展开更多
关键词 CuCl/activated carbon CO adsorbent HYDROGEN π-complexation
下载PDF
Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction
19
作者 Yifan Jiang Bingqi Xie Jisong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期165-172,共8页
Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch ... Suzuki-Miyaura reaction of aryl halides with phenylboronic acid using a heterogeneous palladium catalyst based on activated carbons(AC) was systematically investigated in this work. Two different reaction modes(batch procedure and continuous-flow procedure) were used to study the variations of reaction processing. The heterogeneous catalysts presented excellent reactivity and recyclability for iodobenzene and bromobenzene substrates in batch mode, which can be attributed to stabilization of Pd nanoparticles by the thiol and amino groups on the AC supports. However, significant dehalogenation in the reaction mixture and Pd leaching from the heterogeneous catalysts were observed in continuous-flow mode.This unique phenomenon in continuous-flow mode resulted in a dramatic decline in reaction selectivity and durability of heterogeneous catalysts comparing with that of batch mode. In addition, the heterogeneous Pd catalysts with thiol-and amino-modified AC supports exhibited different reactivity and durability in batch and continuous-flow mode owing to the difference of interaction between Pd species and AC supports. 展开更多
关键词 Suzuki-Miyaura reaction Heterogeneous palladium catalysts activated carbon Thiol-and amino-functionalization Catalyst support Packed bed
下载PDF
Wastewater Treatment Trial by Double Filtration on Granular Activated Carbon (GAC) Prepared from Peanut Shells
20
作者 Mafory Bangoura Alhassane Diami Diallo +1 位作者 Ahmed Sékou Diallo Cellou Kante 《Green and Sustainable Chemistry》 CAS 2023年第1期1-8,共8页
The aim of this work is the purification of wastewater by double filtration on granular activated carbon prepared from peanut shells. The samples of carbonized peanut shells were activated with 35% sulfuric acid and f... The aim of this work is the purification of wastewater by double filtration on granular activated carbon prepared from peanut shells. The samples of carbonized peanut shells were activated with 35% sulfuric acid and finally, we proceeded to the purification tests on double filtration of wastewater. Granular activated carbons (GAC) were very effective for the treatment of turbidity, dissolved oxygen, suspended solids, iron, COD and BOD5 but the best results were observed with nitrite, nitrate and phosphate. However, the second filtration was the most efficient while the lowest rates were observed for pH (17.91% on average), and conductivity (29.71% on average). In addition, this work has allowed increasing the dissolved oxygen by more than 50.16% at the exit of the first filter and more than 105.36% at the exit of the second filter. This study shows that granular activated carbon prepared from peanut shells could be a credible alternative for developing countries in the control of pollution and environmental protection. 展开更多
关键词 Wastewater Treatment activated carbon
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部