采用水热合成法制备了CuS_(x)催化剂,通过改变前驱体铜硫比〔n(Cu)∶n(S)〕,调控催化剂形貌和反应路径。将CuS_(x)催化剂用于温和电势下CO_(2)高效电催化还原制CO反应。采用XRD、FESEM和XPS对CuS_(x)催化剂进行了表征,探究了铜硫比对CuS...采用水热合成法制备了CuS_(x)催化剂,通过改变前驱体铜硫比〔n(Cu)∶n(S)〕,调控催化剂形貌和反应路径。将CuS_(x)催化剂用于温和电势下CO_(2)高效电催化还原制CO反应。采用XRD、FESEM和XPS对CuS_(x)催化剂进行了表征,探究了铜硫比对CuS_(x)催化剂电催化CO_(2)还原“构效关系”的影响。结果表明,铜硫比影响CuS晶体成核与生长,进而影响CuS_(x)催化剂的形貌和S空位缺陷。当铜硫比在2∶1~1∶4内变化,CuS_(x)催化剂的形貌由荷花状转化为花球状,S空位含量由20.66%提高至63.37%,CO_(2)电催化还原活性和目标产物CO选择性明显提升。由铜硫比为1∶4制备的CuS_(x)催化剂(CuS-1∶4)在0.1 mol/L的KHCO3电解液中,在–0.51 V vs.RHE(可逆氢电极)的温和电势下,CO选择性达72.67%。CuS-1∶4优异的CO_(2)还原性能归因于催化剂花球状形貌、高比表面积和气体扩散通道提供的不饱和活性位点促进了气体扩散,以及S空位缺陷对电子传递和*COOH中间体在催化剂表面吸附的强化作用。展开更多
MoS_(2)/CuS composite catalysts were successfully synthesized using a one-step hydrothermal method with sodium molybdate dihydrate,thiourea,oxalic acid,and copper nitrate trihydrate as raw materials.The hydrogen pro-d...MoS_(2)/CuS composite catalysts were successfully synthesized using a one-step hydrothermal method with sodium molybdate dihydrate,thiourea,oxalic acid,and copper nitrate trihydrate as raw materials.The hydrogen pro-duction performance of MoS_(2)/CuS prepared with different molar ratios of Mo to Cu precursors(n_(Mo)∶n_(Cu))as cathodic catalysts was investigated in the two-chamber microbial electrolytic cell(MEC).X-ray diffraction(XRD),X-ray pho-toelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscope(TEM),linear scanning voltammetry(LSV),electrochemical impedance analysis(EIS),and cyclic voltammetry(CV)were used to characterize the synthesized catalysts for testing and analyzing the hydrogen-producing performance.The results showed that the hydrogen evolution performance of MoS_(2)/CuS-20%(nMo∶nCu=5∶1)was better than that of platinum(Pt)mesh,and the hydrogen production rate of MoS_(2)/CuS-20%as a cathode in MEC was(0.2031±0.0237)m^(3)_(H_(2))·m^(-3)·d^(-1) for 72 h at an applied voltage of 0.8 V,which was slightly higher than that of Pt mesh of(0.1886±0.0134)m^(3)_(H_(2))·m^(-3)·d^(-1).The addition of a certain amount of CuS not only regulates the electron transfer ability of MoS_(2) but also increases the density of active sites.展开更多
Cervical cancer stands is a formidablemalignancy that poses a significant threat towomen’s health.Calcium overload,a minimally invasive tumor treatment,aims to accumulate an excessive concentration of Ca^(2+)within m...Cervical cancer stands is a formidablemalignancy that poses a significant threat towomen’s health.Calcium overload,a minimally invasive tumor treatment,aims to accumulate an excessive concentration of Ca^(2+)within mitochondria,triggering apoptosis.Copper sulfide(CuS)represents a photothermal mediator for tumor hyperthermia.However,relying solely on thermotherapy often proves insufficient in controlling tumor growth.Curcumin(CUR),an herbal compound with anti-cancer properties,inhibits the efflux of exogenous Ca^(2+)while promoting its excretion from the endoplasmic reticulum into the cytoplasm.To harness these therapeutic modalities,we have developed a nanoplatform that incorporates hollow CuS nanoparticles(NPs)adorned with multiple CaCO_(3) particles and internally loaded with CUR.This nanocomposite exhibits high uptake and easy escape from lysosomes,along with the degradation of surrounding CaCO3,provoking the generation of abundant exogenous Ca^(2+)in situ,ultimately damaging the mitochondria of diseased cells.Impressively,under laser excitation,the CuS NPs demonstrate a photothermal effect that accelerates the degradation of CaCO_(3),synergistically enhancing the antitumor effect through photothermal therapy.Additionally,fluorescence imaging reveals the distribution of these nanovehicles in vivo,indicating their effective accumulation at the tumor site.This nanoplatform shows promising outcomes for tumor-targeting and the effective treatment in a murine model of cervical cancer,achieved through cascade enhancement of calcium overload-based dual therapy.展开更多
Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-...Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.展开更多
基金National Natural Science Foundation of China (22269010)Jiangxi Provincial Natural Science Foundation (20224BAB214021)Major Research Program of Jingdezhen Ceramic Industry (2023ZDGG002)。
文摘采用水热合成法制备了CuS_(x)催化剂,通过改变前驱体铜硫比〔n(Cu)∶n(S)〕,调控催化剂形貌和反应路径。将CuS_(x)催化剂用于温和电势下CO_(2)高效电催化还原制CO反应。采用XRD、FESEM和XPS对CuS_(x)催化剂进行了表征,探究了铜硫比对CuS_(x)催化剂电催化CO_(2)还原“构效关系”的影响。结果表明,铜硫比影响CuS晶体成核与生长,进而影响CuS_(x)催化剂的形貌和S空位缺陷。当铜硫比在2∶1~1∶4内变化,CuS_(x)催化剂的形貌由荷花状转化为花球状,S空位含量由20.66%提高至63.37%,CO_(2)电催化还原活性和目标产物CO选择性明显提升。由铜硫比为1∶4制备的CuS_(x)催化剂(CuS-1∶4)在0.1 mol/L的KHCO3电解液中,在–0.51 V vs.RHE(可逆氢电极)的温和电势下,CO选择性达72.67%。CuS-1∶4优异的CO_(2)还原性能归因于催化剂花球状形貌、高比表面积和气体扩散通道提供的不饱和活性位点促进了气体扩散,以及S空位缺陷对电子传递和*COOH中间体在催化剂表面吸附的强化作用。
文摘MoS_(2)/CuS composite catalysts were successfully synthesized using a one-step hydrothermal method with sodium molybdate dihydrate,thiourea,oxalic acid,and copper nitrate trihydrate as raw materials.The hydrogen pro-duction performance of MoS_(2)/CuS prepared with different molar ratios of Mo to Cu precursors(n_(Mo)∶n_(Cu))as cathodic catalysts was investigated in the two-chamber microbial electrolytic cell(MEC).X-ray diffraction(XRD),X-ray pho-toelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscope(TEM),linear scanning voltammetry(LSV),electrochemical impedance analysis(EIS),and cyclic voltammetry(CV)were used to characterize the synthesized catalysts for testing and analyzing the hydrogen-producing performance.The results showed that the hydrogen evolution performance of MoS_(2)/CuS-20%(nMo∶nCu=5∶1)was better than that of platinum(Pt)mesh,and the hydrogen production rate of MoS_(2)/CuS-20%as a cathode in MEC was(0.2031±0.0237)m^(3)_(H_(2))·m^(-3)·d^(-1) for 72 h at an applied voltage of 0.8 V,which was slightly higher than that of Pt mesh of(0.1886±0.0134)m^(3)_(H_(2))·m^(-3)·d^(-1).The addition of a certain amount of CuS not only regulates the electron transfer ability of MoS_(2) but also increases the density of active sites.
基金This research was sponsored by the key research program of Ningbo(No.2023Z210)funded by Ningbo Natural Science Foundation(No.202003N4006)the Joint Research Funds of Department of Science&Technology of Shaanxi Province,Northwestern Polytechnical University(No.2020GXLH-Z-017).
文摘Cervical cancer stands is a formidablemalignancy that poses a significant threat towomen’s health.Calcium overload,a minimally invasive tumor treatment,aims to accumulate an excessive concentration of Ca^(2+)within mitochondria,triggering apoptosis.Copper sulfide(CuS)represents a photothermal mediator for tumor hyperthermia.However,relying solely on thermotherapy often proves insufficient in controlling tumor growth.Curcumin(CUR),an herbal compound with anti-cancer properties,inhibits the efflux of exogenous Ca^(2+)while promoting its excretion from the endoplasmic reticulum into the cytoplasm.To harness these therapeutic modalities,we have developed a nanoplatform that incorporates hollow CuS nanoparticles(NPs)adorned with multiple CaCO_(3) particles and internally loaded with CUR.This nanocomposite exhibits high uptake and easy escape from lysosomes,along with the degradation of surrounding CaCO3,provoking the generation of abundant exogenous Ca^(2+)in situ,ultimately damaging the mitochondria of diseased cells.Impressively,under laser excitation,the CuS NPs demonstrate a photothermal effect that accelerates the degradation of CaCO_(3),synergistically enhancing the antitumor effect through photothermal therapy.Additionally,fluorescence imaging reveals the distribution of these nanovehicles in vivo,indicating their effective accumulation at the tumor site.This nanoplatform shows promising outcomes for tumor-targeting and the effective treatment in a murine model of cervical cancer,achieved through cascade enhancement of calcium overload-based dual therapy.
基金supported by the National Natural Science Foundation of China,Nos.32371065(to CL)and 32170950(to LY)the Natural Science Foundation of the Guangdong Province,No.2023A1515010899(to CL)the Science and Technology Projects in Guangzhou,Nos.2023A4J0578 and 2024A03J0180(to CW)。
文摘Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.