The texture of 80% cold rolling CuZn ordered alloy was investigated. The development of rolling texturein 50%Cu-50%Zn(at.) alloy has been characterized by a inhomogenous {111} fiber texture with strong {111} <112&g...The texture of 80% cold rolling CuZn ordered alloy was investigated. The development of rolling texturein 50%Cu-50%Zn(at.) alloy has been characterized by a inhomogenous {111} fiber texture with strong {111} <112>component, which is significantly different from the conventional Cu-Zn alloys. The main characters of cold rollingtextures in ordered CuZn alloy are obviously similar to that in IF steel with bcc structure or ordered Fe3A1-basedalloys with imperfect B2 structure. From the rolling texture obtained by experiments and simulations,it can be estimated that main deformation mechanism are characterized by the activation of slip systems with <111> Burgersvector in CuZn ordered alloy.展开更多
Alloying metals to form intermetallics has been proven effective in tuning the chemical properties of metal-based catalysts.However,intermetallic alloys can undergo structural and chemical transformations under reacti...Alloying metals to form intermetallics has been proven effective in tuning the chemical properties of metal-based catalysts.However,intermetallic alloys can undergo structural and chemical transformations under reactive conditions,leading to changes in their catalytic function.Elucidating and understanding these transformations are crucial for establishing relevant structureperformance relationships and for the rational design of alloy-based catalysts.In this work,we used CuZn alloy nanoparticles(NPs)as a model material system and employed in situ transmission electron microscopy(TEM)to investigate the structural and chemical changes of CuZn NPs under H_(2),O_(2)and their mixture.Our results show how CuZn NPs undergo sequential transformations in the gas mixture at elevated temperatures,starting with gradual leaching and segregation of Zn,followed by oxidation at the NP surface.The remaining copper at the core of particles can then engage in dynamic behavior,eventually freeing itself from the zinc oxide shell.The structural dynamics arises from an oscillatory phase transition between Cu and Cu_(2)O and is correlated with the catalytic water formation,as confirmed by in situ mass spectrometry(MS).Under pure H_(2)or O_(2)atmosphere,we observe different structural evolution pathways and final chemical states of CuZn NPs compared to those in the gas mixture.These results clearly demonstrate that the chemical state of alloy NPs can vary considerably under reactive redox atmospheres,particularly for those containing elements with distinct redox properties,necessitating the use of in situ or detailed ex situ characterizations to gain relevant insights into the states of intermetallic alloy-based catalysts and structure-activity relationships.展开更多
Uncontrollable dendrite growth and side reactions resulting in short operating life and low Coulombic efficiency have severely hindered the further development of aqueous zinc-ion batteries(AZIBs).In this work,we desi...Uncontrollable dendrite growth and side reactions resulting in short operating life and low Coulombic efficiency have severely hindered the further development of aqueous zinc-ion batteries(AZIBs).In this work,we designed to grow zeolitic imidazolate framework-8(ZIF-8)uniformly on CuO nanosheets(NSs)and prepared carbon-coated CuZn alloy NSs(CuZn@C NSs)by calcination under H_(2)/Ar atmosphere.As reflected by extended X-ray absorption fine structure(EXAFS),density functional theory(DFT),in-situ Raman,the Cu–Zn and Zn–N bonds present in CuZn@C NSs act as zincophilic sites to uniformly absorb Zn ions and inhibit the formation of Zn dendrites.At the same time,CuZn@C NSs hinder the direct contact between zinc anode and electrolyte,preventing the occurrence of side reactions.More impressively,the symmetric cells constructed with CuZn@C NSs anodes exhibited excellent zinc plating/exfoliation performance and long life cycle at different current densities with low voltage hysteresis.In addition,low polarization,high capacity retention,long cycle life over 1000 cycles at 5 A∙g^(−1) were achieved when CuZn@C NSs were used as anodes for CuZn@C/V_(2)O_(5)full cells.展开更多
文摘The texture of 80% cold rolling CuZn ordered alloy was investigated. The development of rolling texturein 50%Cu-50%Zn(at.) alloy has been characterized by a inhomogenous {111} fiber texture with strong {111} <112>component, which is significantly different from the conventional Cu-Zn alloys. The main characters of cold rollingtextures in ordered CuZn alloy are obviously similar to that in IF steel with bcc structure or ordered Fe3A1-basedalloys with imperfect B2 structure. From the rolling texture obtained by experiments and simulations,it can be estimated that main deformation mechanism are characterized by the activation of slip systems with <111> Burgersvector in CuZn ordered alloy.
基金supported by the Swedish Research council under contract 2018-07152the Swedish Governmental Agency for Innovation Systems under contract 2018-04969+1 种基金Formas under contract 2019-02496X.H.thanks 1000 talent youth project,Fuzhou University and Qingyuan Innovation Laboratory for the financial support.
文摘Alloying metals to form intermetallics has been proven effective in tuning the chemical properties of metal-based catalysts.However,intermetallic alloys can undergo structural and chemical transformations under reactive conditions,leading to changes in their catalytic function.Elucidating and understanding these transformations are crucial for establishing relevant structureperformance relationships and for the rational design of alloy-based catalysts.In this work,we used CuZn alloy nanoparticles(NPs)as a model material system and employed in situ transmission electron microscopy(TEM)to investigate the structural and chemical changes of CuZn NPs under H_(2),O_(2)and their mixture.Our results show how CuZn NPs undergo sequential transformations in the gas mixture at elevated temperatures,starting with gradual leaching and segregation of Zn,followed by oxidation at the NP surface.The remaining copper at the core of particles can then engage in dynamic behavior,eventually freeing itself from the zinc oxide shell.The structural dynamics arises from an oscillatory phase transition between Cu and Cu_(2)O and is correlated with the catalytic water formation,as confirmed by in situ mass spectrometry(MS).Under pure H_(2)or O_(2)atmosphere,we observe different structural evolution pathways and final chemical states of CuZn NPs compared to those in the gas mixture.These results clearly demonstrate that the chemical state of alloy NPs can vary considerably under reactive redox atmospheres,particularly for those containing elements with distinct redox properties,necessitating the use of in situ or detailed ex situ characterizations to gain relevant insights into the states of intermetallic alloy-based catalysts and structure-activity relationships.
基金the National Natural Science Foundation of China(Nos.NSFC-U1904215,21805192,and 12102422)the Natural Science Foundation of Jiangsu Province(No.BK20200044)+2 种基金the Top-notch Academic Programs Project(TAPP)of Jiangsu Higher Education Institutions,and the Program for Young Changjiang Scholars of the Ministry of Education,China(No.Q2018270)We also acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions.Y.Y.L.acknowledges the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515110735)the Natural Science Research Project of Anhui Educational Committee for Excellent Young Scholars(No.2022AH030152).
文摘Uncontrollable dendrite growth and side reactions resulting in short operating life and low Coulombic efficiency have severely hindered the further development of aqueous zinc-ion batteries(AZIBs).In this work,we designed to grow zeolitic imidazolate framework-8(ZIF-8)uniformly on CuO nanosheets(NSs)and prepared carbon-coated CuZn alloy NSs(CuZn@C NSs)by calcination under H_(2)/Ar atmosphere.As reflected by extended X-ray absorption fine structure(EXAFS),density functional theory(DFT),in-situ Raman,the Cu–Zn and Zn–N bonds present in CuZn@C NSs act as zincophilic sites to uniformly absorb Zn ions and inhibit the formation of Zn dendrites.At the same time,CuZn@C NSs hinder the direct contact between zinc anode and electrolyte,preventing the occurrence of side reactions.More impressively,the symmetric cells constructed with CuZn@C NSs anodes exhibited excellent zinc plating/exfoliation performance and long life cycle at different current densities with low voltage hysteresis.In addition,low polarization,high capacity retention,long cycle life over 1000 cycles at 5 A∙g^(−1) were achieved when CuZn@C NSs were used as anodes for CuZn@C/V_(2)O_(5)full cells.