Constructing a protective layer on Zn anode surface with high lattice matching to Zn(002)can facilitate preferential growth along the(002)crystal plane and suppress dendritic growth as well as interface side reactions...Constructing a protective layer on Zn anode surface with high lattice matching to Zn(002)can facilitate preferential growth along the(002)crystal plane and suppress dendritic growth as well as interface side reactions.Whereas most of protective layers are complex and costly,making commercial applications challenging.Herein,we introduce a facile method involving the addition of CuCl_(2) electrolyte additives to conventional electrolyte systems,which,through rapid displacement reactions and controlled electrochemical cycling,forms a CuZn_(5) alloy layer with 97.2%lattice matching to the(002)plane(CuZn_(5)@Zn),thus regulating the(002)plane epitaxial deposition.As a result,the symmetric cells with CuZn_(5)@Zn demonstrate an ultra-long cycle life of 3600 h at 1 mA cm^(-2).Under extreme conditions of high current density(20 m A cm^(-2))and high zinc utilization(DOD_(Zn)=50%),stable cycling performance is maintained for 220 and 350 h,respectively.Furthermore,the CuZn_(5)@Zn||NH_(4)V_(4)O_(10)full cell maintains a capacity of 120 m A h g^(-1)even after 10,000 cycles at a high current density of 10 A g^(-1).This work presents a facile and efficient strategy for constructing stable metal anode materials,with implications for the development of next-generation rechargeable batteries.展开更多
基金financially supported by the National Key R&D Program of China(2022YFB3807700)the National Natural Science Foundation of China(Grant no.52125405 and U22A20108)+4 种基金the support from the Hubei Provincial Natural Science Foundation of China(Grant No.2023AFB155)the opening project of State Key Laboratory of Metastable Materials Science and Technology(Yanshan University)(opening project number:202401,202404)the Thailand Science Research and Innovation Fund Chulalongkorn University(INDF67620003)the National Science,Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(Grant no.B05F640153)the National Research Council of Thailand(NRCT)and Chulalongkorn University(N42A660383)。
文摘Constructing a protective layer on Zn anode surface with high lattice matching to Zn(002)can facilitate preferential growth along the(002)crystal plane and suppress dendritic growth as well as interface side reactions.Whereas most of protective layers are complex and costly,making commercial applications challenging.Herein,we introduce a facile method involving the addition of CuCl_(2) electrolyte additives to conventional electrolyte systems,which,through rapid displacement reactions and controlled electrochemical cycling,forms a CuZn_(5) alloy layer with 97.2%lattice matching to the(002)plane(CuZn_(5)@Zn),thus regulating the(002)plane epitaxial deposition.As a result,the symmetric cells with CuZn_(5)@Zn demonstrate an ultra-long cycle life of 3600 h at 1 mA cm^(-2).Under extreme conditions of high current density(20 m A cm^(-2))and high zinc utilization(DOD_(Zn)=50%),stable cycling performance is maintained for 220 and 350 h,respectively.Furthermore,the CuZn_(5)@Zn||NH_(4)V_(4)O_(10)full cell maintains a capacity of 120 m A h g^(-1)even after 10,000 cycles at a high current density of 10 A g^(-1).This work presents a facile and efficient strategy for constructing stable metal anode materials,with implications for the development of next-generation rechargeable batteries.