Structural reconstruction of electrocatalysts plays a pivotal role in catalytic performances for CO_(2)reduction reaction(CO_(2)RR),whereas the behavior is by far superficially understood.Here,we report that CO_(2)acc...Structural reconstruction of electrocatalysts plays a pivotal role in catalytic performances for CO_(2)reduction reaction(CO_(2)RR),whereas the behavior is by far superficially understood.Here,we report that CO_(2)accessibility results in a universal self-adaptive structural reconstruction from Cu_(2)O to Cu@CuxO composites,ending with feeding gas-dependent microstructures and catalytic performances.The CO_(2)-rich atmosphere favors reconstruction for CO_(2)RR,whereas the CO_(2)-deficient one prefers that for hydrogen evolution reaction.With the assistance of spectroscopic analysis and theoretical calculations,we uncover a CO_(2)-induced passivation behavior by identifying a reductionresistant but catalytic active Cu(I)-rich amorphous layer stabilized by*CO intermediates.Additionally,we find extra CO production is indispensable for the robust production of C2H4.An inverse correlation between durability and FECO/FEC2H4 is disclosed,suggesting that the selfstabilization process involving the absorption of*CO intermediates on Cu(I)sites is essential for durable electrolysis.Guided by this insight,we design hollow Cu_(2)O nanospheres for durable and selective CO_(2)RR electrolysis in producing C2H4.Our work recognizes the previously overlooked passivation reconstruction and self-stabilizing behavior and highlights the critical role of the local atmosphere in modulating reconstruction and catalytic processes.展开更多
The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research.In this study,we designed and prepared a Covalent Triazine Framework(CTF)-Cu_(2)O@NC composite featuring an...The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research.In this study,we designed and prepared a Covalent Triazine Framework(CTF)-Cu_(2)O@NC composite featuring an S-scheme heterojunction structure aimed at enhancing the photocatalytic hydrogen production.The light absorption capacity,electron-hole separation efficiency and H_(2)-evolution activity of the composite were significantly enhanced due to the synergistic effects of the nitrogen-doped carbon(NC)layer and the S-scheme heterojunction.Structural and photoelectrochemical characterization of the system reveal that the S-scheme heterojunctions not only enhance the separation efficiency of photogenerated carriers but also maintain the strong redox capabilities to further promote the photocatalytic reactions.Moreover,the NC layer could simultaneously reduce the photocorrosion of Cu_(2)O and promote the electron transfer.Experimental results demonstrate that the CTF-7%Cu_(2)O@NC composite shows outstanding hydrogen-production performance under visible light,achieving 15645μmol∙g^(−1)∙h^(−1),significantly surpassing the photocatalytic activity of pure CTF(2673μmol∙g^(−1)∙h^(−1)).This study introduces a novel approach to the development of efficient and innovative photocatalytic materials,strongly supporting the advancement of sustainable hydrogen energy.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.22479097)the Shanghai Science and Technology Committee(Grant No.23ZR1433000)the National High-Level Talent Program for Young Scholars,the Start-up Fund(F.S.)from Shanghai Jiao Tong University.
文摘Structural reconstruction of electrocatalysts plays a pivotal role in catalytic performances for CO_(2)reduction reaction(CO_(2)RR),whereas the behavior is by far superficially understood.Here,we report that CO_(2)accessibility results in a universal self-adaptive structural reconstruction from Cu_(2)O to Cu@CuxO composites,ending with feeding gas-dependent microstructures and catalytic performances.The CO_(2)-rich atmosphere favors reconstruction for CO_(2)RR,whereas the CO_(2)-deficient one prefers that for hydrogen evolution reaction.With the assistance of spectroscopic analysis and theoretical calculations,we uncover a CO_(2)-induced passivation behavior by identifying a reductionresistant but catalytic active Cu(I)-rich amorphous layer stabilized by*CO intermediates.Additionally,we find extra CO production is indispensable for the robust production of C2H4.An inverse correlation between durability and FECO/FEC2H4 is disclosed,suggesting that the selfstabilization process involving the absorption of*CO intermediates on Cu(I)sites is essential for durable electrolysis.Guided by this insight,we design hollow Cu_(2)O nanospheres for durable and selective CO_(2)RR electrolysis in producing C2H4.Our work recognizes the previously overlooked passivation reconstruction and self-stabilizing behavior and highlights the critical role of the local atmosphere in modulating reconstruction and catalytic processes.
文摘The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research.In this study,we designed and prepared a Covalent Triazine Framework(CTF)-Cu_(2)O@NC composite featuring an S-scheme heterojunction structure aimed at enhancing the photocatalytic hydrogen production.The light absorption capacity,electron-hole separation efficiency and H_(2)-evolution activity of the composite were significantly enhanced due to the synergistic effects of the nitrogen-doped carbon(NC)layer and the S-scheme heterojunction.Structural and photoelectrochemical characterization of the system reveal that the S-scheme heterojunctions not only enhance the separation efficiency of photogenerated carriers but also maintain the strong redox capabilities to further promote the photocatalytic reactions.Moreover,the NC layer could simultaneously reduce the photocorrosion of Cu_(2)O and promote the electron transfer.Experimental results demonstrate that the CTF-7%Cu_(2)O@NC composite shows outstanding hydrogen-production performance under visible light,achieving 15645μmol∙g^(−1)∙h^(−1),significantly surpassing the photocatalytic activity of pure CTF(2673μmol∙g^(−1)∙h^(−1)).This study introduces a novel approach to the development of efficient and innovative photocatalytic materials,strongly supporting the advancement of sustainable hydrogen energy.