In this work, a series of Cu2O-Ag/ZnO, Cu2O/ZnO and Ag/ZnO nanocomposites with various compositions were prepared via a hydrothermal method followed by chemical modification, and their antibacterial performance was in...In this work, a series of Cu2O-Ag/ZnO, Cu2O/ZnO and Ag/ZnO nanocomposites with various compositions were prepared via a hydrothermal method followed by chemical modification, and their antibacterial performance was investigated in detail. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy results confirmed that 31 nm Cu20 and 30 nm Ag nanoparticles are well-dispersed on 202 nm ZnO grains to form a Cu2O/ZnO and Ag/ZnO heterojunction, respectively. The bi-heterojuction structure in the Cu20-Ag/ZnO provided a synergistic effect on antibacterial activity, and the(Cu2O)0.04Ag0.06ZnO0.9nanocomposites showed the highest antimicrobial activity of all samples with minimum inhibitory concentration and minimum bactericidal concentration against Escherichia coli and Staphylococcus aureus as low to 31.25 μg/mL, 250μg/mL, 125μg/mL and 500μg/mL, respectively. This is the first report of the antibacterial activities of Cu2O and Ag co-modified ZnO nanocomposites.展开更多
Pathogenic microbial infections are threatening the people’s health and even life.The most common channel of infections can be caused by skin contact,especially hand touching facilities such as touching screen.In thi...Pathogenic microbial infections are threatening the people’s health and even life.The most common channel of infections can be caused by skin contact,especially hand touching facilities such as touching screen.In this work,Cu_(2)O covered with ZnO nanofilm was prepared on the surface of indium tin oxide conductive glass by electrodeposition and the followed atomic layer deposition process.This composite coating had a light transmittance of 71.5%,which met the light transmission needs of touch screen device.Electron spin resonance spectra showed that composite materials can generate more reactive oxygen species(ROS)than a single component under solar light irradiation.This was because a p-n junction with a built-in electric field was formed at the interface after Cu_(2)O contacting with ZnO.In the process of photocatalysis,photogenerated electrons and holes migrated at the interface driven by the built-in electric field,which promoted the separation of carriers.The antibacterial rate against Staphylococcus aureus reached 92.5%after 3 min of light irradiation with simulated sunlight due to the synergy of ROS and Cu ions,Zn ions.Therefore,this work may provide a potential method for antibacterial application of preventing hand touch infections.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant Nos.51677120 and 51207093)the Shenzhen Government Fund(Grant Nos.JCYJ20160422102919963)the Shenzhen Key Laboratory of Special Functional Materials(Grant Nos.T201502)
文摘In this work, a series of Cu2O-Ag/ZnO, Cu2O/ZnO and Ag/ZnO nanocomposites with various compositions were prepared via a hydrothermal method followed by chemical modification, and their antibacterial performance was investigated in detail. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy results confirmed that 31 nm Cu20 and 30 nm Ag nanoparticles are well-dispersed on 202 nm ZnO grains to form a Cu2O/ZnO and Ag/ZnO heterojunction, respectively. The bi-heterojuction structure in the Cu20-Ag/ZnO provided a synergistic effect on antibacterial activity, and the(Cu2O)0.04Ag0.06ZnO0.9nanocomposites showed the highest antimicrobial activity of all samples with minimum inhibitory concentration and minimum bactericidal concentration against Escherichia coli and Staphylococcus aureus as low to 31.25 μg/mL, 250μg/mL, 125μg/mL and 500μg/mL, respectively. This is the first report of the antibacterial activities of Cu2O and Ag co-modified ZnO nanocomposites.
基金supported by the National Natural Science Foundation of China(Nos.51871162,and 52173251)the China National Funds for Distinguished Young Scientists(No.51925104)。
文摘Pathogenic microbial infections are threatening the people’s health and even life.The most common channel of infections can be caused by skin contact,especially hand touching facilities such as touching screen.In this work,Cu_(2)O covered with ZnO nanofilm was prepared on the surface of indium tin oxide conductive glass by electrodeposition and the followed atomic layer deposition process.This composite coating had a light transmittance of 71.5%,which met the light transmission needs of touch screen device.Electron spin resonance spectra showed that composite materials can generate more reactive oxygen species(ROS)than a single component under solar light irradiation.This was because a p-n junction with a built-in electric field was formed at the interface after Cu_(2)O contacting with ZnO.In the process of photocatalysis,photogenerated electrons and holes migrated at the interface driven by the built-in electric field,which promoted the separation of carriers.The antibacterial rate against Staphylococcus aureus reached 92.5%after 3 min of light irradiation with simulated sunlight due to the synergy of ROS and Cu ions,Zn ions.Therefore,this work may provide a potential method for antibacterial application of preventing hand touch infections.