期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Robust range-parameterized cubature Kalman filter for bearings-only tracking 被引量:9
1
作者 吴昊 陈树新 +1 位作者 杨宾峰 罗玺 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1399-1405,共7页
In order to improve tracking accuracy when initial estimate is inaccurate or outliers exist,a bearings-only tracking approach called the robust range-parameterized cubature Kalman filter(RRPCKF)was proposed.Firstly,th... In order to improve tracking accuracy when initial estimate is inaccurate or outliers exist,a bearings-only tracking approach called the robust range-parameterized cubature Kalman filter(RRPCKF)was proposed.Firstly,the robust extremal rule based on the pollution distribution was introduced to the cubature Kalman filter(CKF)framework.The improved Turkey weight function was subsequently constructed to identify the outliers whose weights were reduced by establishing equivalent innovation covariance matrix in the CKF.Furthermore,the improved range-parameterize(RP)strategy which divides the filter into some weighted robust CKFs each with a different initial estimate was utilized to solve the fuzzy initial estimation problem efficiently.Simulations show that the result of the RRPCKF is more accurate and more robust whether outliers exist or not,whereas that of the conventional algorithms becomes distorted seriously when outliers appear. 展开更多
关键词 bearings-only tracking NONLINEARITY cubature Kalman filter numerical integration equivalent weight function
下载PDF
Robust cubature Kalman filter method for the nonlinear alignment of SINS 被引量:6
2
作者 Shi-luo Guo Ying-jie Sun +1 位作者 Li-min Chang Yang Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期593-598,共6页
Nonlinear initial alignment is a significant research topic for strapdown inertial navigation system(SINS).Cubature Kalman filter(CKF)is a popular tool for nonlinear initial alignment.Standard CKF assumes that the sta... Nonlinear initial alignment is a significant research topic for strapdown inertial navigation system(SINS).Cubature Kalman filter(CKF)is a popular tool for nonlinear initial alignment.Standard CKF assumes that the statics of the observation noise are pre-given before the filtering process.Therefore,any unpredicted outliers in observation noise will decrease the stability of the filter.In view of this problem,improved CKF method with robustness is proposed.Multiple fading factors are introduced to rescale the observation noise covariance.Then the update stage of the filter can be autonomously tuned,and if there are outliers exist in the observations,the update should be less weighted.Under the Gaussian assumption of KF,the Mahalanobis distance of the innovation vector is supposed to be Chi-square distributed.Therefore a judging index based on Chi-square test is designed to detect the noise outliers,determining whether the fading tune are required.The proposed method is applied in the nonlinear alignment of SINS,and vehicle experiment proves the effective of the proposed method. 展开更多
关键词 SINS Nonlinear alignment cubature Kalman filter ROBUST Multiple fading factors Hypothesis test
下载PDF
Major Development Under Gaussian Filtering Since Unscented Kalman Filter 被引量:7
3
作者 Abhinoy Kumar Singh 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1308-1325,共18页
Filtering is a recursive estimation of hidden states of a dynamic system from noisy measurements.Such problems appear in several branches of science and technology,ranging from target tracking to biomedical monitoring... Filtering is a recursive estimation of hidden states of a dynamic system from noisy measurements.Such problems appear in several branches of science and technology,ranging from target tracking to biomedical monitoring.A commonly practiced approach of filtering with nonlinear systems is Gaussian filtering.The early Gaussian filters used a derivative-based implementation,and suffered from several drawbacks,such as the smoothness requirements of system models and poor stability.A derivative-free numerical approximation-based Gaussian filter,named the unscented Kalman filter(UKF),was introduced in the nineties,which offered several advantages over the derivativebased Gaussian filters.Since the proposition of UKF,derivativefree Gaussian filtering has been a highly active research area.This paper reviews significant developments made under Gaussian filtering since the proposition of UKF.The review is particularly focused on three categories of developments:i)advancing the numerical approximation methods;ii)modifying the conventional Gaussian approach to further improve the filtering performance;and iii)constrained filtering to address the problem of discrete-time formulation of process dynamics.This review highlights the computational aspect of recent developments in all three categories.The performance of various filters are analyzed by simulating them with real-life target tracking problems. 展开更多
关键词 Bayesian framework cubature rule-based filtering Gaussian filters Gaussian sum and square-root filtering nonlinear filtering quadrature rule-based filtering unscented transformation
下载PDF
Low-cost adaptive square-root cubature Kalman filter forsystems with process model uncertainty 被引量:6
4
作者 an zhang shuida bao +1 位作者 wenhao bi yuan yuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期945-953,共9页
A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman fil... A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman filter cannot handle uncertainties ina process model, such as initial state estimation errors, parametermismatch and abrupt state changes. These uncertainties severelyaffect filter performance and may even provoke divergence. Astrong tracking filter (STF), which utilizes a suboptimal fading factor,is an adaptive approach that is commonly adopted to solvethis problem. However, if the strong tracking SCKF (STSCKF)uses the same method as the extended Kalman filter (EKF) tointroduce the suboptimal fading factor, it greatly increases thecomputational load. To avoid this problem, a low-cost introductorymethod is proposed and a hypothesis testing theory is applied todetect uncertainties. The computational load analysis is performedby counting the total number of floating-point operations and it isfound that the computational load of LCASCKF is close to that ofSCKF. Experimental results prove that the LCASCKF performs aswell as STSCKF, while the increase in computational load is muchlower than STSCKF. 展开更多
关键词 square-root cubature Kalman filter strong tracking filter robustness computational load.
下载PDF
Stochastic convergence analysis of cubature Kalman filter with intermittent observations 被引量:5
5
作者 SHI Jie QI Guoqing +1 位作者 LI Yinya SHENG Andong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期823-833,共11页
The stochastic convergence of the cubature Kalmanfilter with intermittent observations (CKFI) for general nonlinearstochastic systems is investigated. The Bernoulli distributed ran-dom variable is employed to descri... The stochastic convergence of the cubature Kalmanfilter with intermittent observations (CKFI) for general nonlinearstochastic systems is investigated. The Bernoulli distributed ran-dom variable is employed to describe the phenomenon of intermit-tent observations. According to the cubature sample principle, theestimation error and the error covariance matrix (ECM) of CKFIare derived by Taylor series expansion, respectively. Afterwards, itis theoretically proved that the ECM will be bounded if the obser-vation arrival probability exceeds a critical minimum observationarrival probability. Meanwhile, under proper assumption corre-sponding with real engineering situations, the stochastic stabilityof the estimation error can be guaranteed when the initial estima-tion error and the stochastic noise terms are sufficiently small. Thetheoretical conclusions are verified by numerical simulations fortwo illustrative examples; also by evaluating the tracking perfor-mance of the optical-electric target tracking system implementedby CKFI and unscented Kalman filter with intermittent observa-tions (UKFI) separately, it is demonstrated that the proposed CKFIslightly outperforms the UKFI with respect to tracking accuracy aswell as real time performance. 展开更多
关键词 cubature Kalman filter (CKF) intermittent observation estimation error stochastic stability.
下载PDF
Underwater square-root cubature attitude estimator by use of quaternion-vector switching and geomagnetic field tensor 被引量:3
6
作者 HUANG Yu WU Lihua YU Qiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期804-814,共11页
This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagn... This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagnetic field tensor measurement dependent on the attitude and a gyro-based model for attitude propagation. In this algorithm, switching between the quaternion and the three-component vector is done by a couple of the mathematical transformations. Quaternion is chosen as the state variable of attitude in the kinematics equation to time update, while the mean value and covariance of the quaternion are computed by the three-component vector to avoid the normalization constraint of quaternion. The square-root forms enjoy a continuous and improved numerical stability because all the resulting covariance matrices are guaranteed to stay positively semidefinite. The entire square-root cubature attitude estimation algorithm with quaternion-vector switching for the nonlinear equality constraint of quaternion is given. The numerical simulation of simultaneous swing motions in the three directions is performed to compare with the three kinds of filters and the results indicate that the proposed filter provides lower attitude estimation errors than the other two kinds of filters and a good convergence rate. 展开更多
关键词 attitude estimator geomagnetic field tensor quaternion-vector switching square-root cubature Kalman filter autonomous underwater vehicle(AUV)
下载PDF
Maneuvering target tracking algorithm based on cubature Kalman filter with observation iterated update 被引量:4
7
作者 胡振涛 Fu Chunling +1 位作者 Cao Zhiwei Li Congcong 《High Technology Letters》 EI CAS 2015年第1期39-45,共7页
Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with it... Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method,a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed.Firstly,aiming to the structural features of cubature Kalman filter,the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update.Secondly,the improved cubature Kalman filter is used as the model filter of interacting multiple model,and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step.In the simulations,compared with classic improved interacting multiple model algorithms,the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm. 展开更多
关键词 maneuvering target tracking nonlinear filtering cubature Kalman filter(CKF) interacting multiple model(IMM)
下载PDF
Cubature Kalman Filter Under Minimum Error Entropy With Fiducial Points for INS/GPS Integration 被引量:2
8
作者 Lujuan Dang Badong Chen +2 位作者 Yulong Huang Yonggang Zhang Haiquan Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第3期450-465,共16页
Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased es... Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises. 展开更多
关键词 cubature Kalman filter(CKF) inertial navigation system(INS)/global positioning system(GPS)integration minimum error entropy with fiducial points(MEEF) non-Gaussian noise
下载PDF
Cubature Kalman filters: Derivation and extension 被引量:4
9
作者 张鑫春 郭承军 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期497-502,共6页
This paper focuses on the cubature Kalman filters (CKFs) for the nonlinear dynamic systems with additive process and measurement noise. As is well known, the heart of the CKF is the third-degree spherical–radial cu... This paper focuses on the cubature Kalman filters (CKFs) for the nonlinear dynamic systems with additive process and measurement noise. As is well known, the heart of the CKF is the third-degree spherical–radial cubature rule which makes it possible to compute the integrals encountered in nonlinear filtering problems. However, the rule not only requires computing the integration over an n-dimensional spherical region, but also combines the spherical cubature rule with the radial rule, thereby making it difficult to construct higher-degree CKFs. Moreover, the cubature formula used to construct the CKF has some drawbacks in computation. To address these issues, we present a more general class of the CKFs, which completely abandons the spherical–radial cubature rule. It can be shown that the conventional CKF is a special case of the proposed algorithm. The paper also includes a fifth-degree extension of the CKF. Two target tracking problems are used to verify the proposed algorithm. The results of both experiments demonstrate that the higher-degree CKF outperforms the conventional nonlinear filters in terms of accuracy. 展开更多
关键词 nonlinear filtering cubature Kalman filters cubature rules state estimation fully symmetric points
下载PDF
Multi-sensor Hybrid Fusion Algorithm Based on Adaptive Square-root Cubature Kalman Filter 被引量:6
10
作者 Xiaogong Lin Shusheng Xu Yehai Xie 《Journal of Marine Science and Application》 2013年第1期106-111,共6页
In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate r... In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms. 展开更多
关键词 hybrid fusion algorithm square-root cubature Kalman filter adaptive filter fault detection
下载PDF
Cubature Kalman Filter Based Millimeter Wave Beam Tracking for OTFS Systems 被引量:1
11
作者 Xiaohan Qi Jianxiao Xie 《China Communications》 SCIE CSCD 2023年第7期233-240,共8页
In this paper,a Millimeter wave(mmWave)beam tracking problem is studied in orthogonal time frequency space(OTFS)systems.Considering the nonlinearity of beamforming and the constraints of existing Kalman-filtering base... In this paper,a Millimeter wave(mmWave)beam tracking problem is studied in orthogonal time frequency space(OTFS)systems.Considering the nonlinearity of beamforming and the constraints of existing Kalman-filtering based beam tracking schemes,we propose a novel Cubature Kalman Filter(CKF)framework tracking the channel state information(CSI)to manage the challenge of highspeed channel variation in single-user moving scene for OTFS systems.Aiming for low complexity for mobile settings,this paper trains only one beam pair to track a path to maintain the reliable communication link in the analog beamforming architecture.Simulation results show that our proposed method has better tracking performance to improve the accuracy of the estimated beam angle compared with prior work. 展开更多
关键词 OTFS millimeter wave beam tracking cubature Kalman Filter
下载PDF
Estimation Performance for the Cubature Particle Filter under Nonlinear/Non-Gaussian Environments
12
作者 Dah-Jing Jwo Chien-Hao Tseng 《Computers, Materials & Continua》 SCIE EI 2021年第5期1555-1575,共21页
This paper evaluates the state estimation performance for processing nonlinear/non-Gaussian systems using the cubature particle lter(CPF),which is an estimation algorithm that combines the cubature Kalman lter(CKF)and... This paper evaluates the state estimation performance for processing nonlinear/non-Gaussian systems using the cubature particle lter(CPF),which is an estimation algorithm that combines the cubature Kalman lter(CKF)and the particle lter(PF).The CPF is essentially a realization of PF where the third-degree cubature rule based on numerical integration method is adopted to approximate the proposal distribution.It is benecial where the CKF is used to generate the importance density function in the PF framework for effectively resolving the nonlinear/non-Gaussian problems.Based on the spherical-radial transformation to generate an even number of equally weighted cubature points,the CKF uses cubature points with the same weights through the spherical-radial integration rule and employs an analytical probability density function(pdf)to capture the mean and covariance of the posterior distribution using the total probability theorem and subsequently uses the measurement to update with Bayes’rule.It is capable of acquiring a maximum a posteriori probability estimate of the nonlinear system,and thus the importance density function can be used to approximate the true posterior density distribution.In Bayesian ltering,the nonlinear lter performs well when all conditional densities are assumed Gaussian.When applied to the nonlinear/non-Gaussian distribution systems,the CPF algorithm can remarkably improve the estimation accuracy as compared to the other particle lterbased approaches,such as the extended particle lter(EPF),and unscented particle lter(UPF),and also the Kalman lter(KF)-type approaches,such as the extended Kalman lter(EKF),unscented Kalman lter(UKF)and CKF.Two illustrative examples are presented showing that the CPF achieves better performance as compared to the other approaches. 展开更多
关键词 Nonlinear estimation NON-GAUSSIAN Kalman lter unscented Kalman lter cubature particle filter
下载PDF
Cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion
13
作者 胡振涛 Hu Yumei +1 位作者 Guo Zhen Wu Yewei 《High Technology Letters》 EI CAS 2016年第4期376-384,共9页
The GM-PHD framework as recursion realization of PHD filter is extensively applied to multitarget tracking system. A new idea of improving the estimation precision of time-varying multi-target in non-linear system is ... The GM-PHD framework as recursion realization of PHD filter is extensively applied to multitarget tracking system. A new idea of improving the estimation precision of time-varying multi-target in non-linear system is proposed due to the advantage of computation efficiency in this paper. First,a novel cubature Kalman probability hypothesis density filter is designed for single sensor measurement system under the Gaussian mixture framework. Second,the consistency fusion strategy for multi-sensor measurement is proposed through constructing consistency matrix. Furthermore,to take the advantage of consistency fusion strategy,fused measurement is introduced in the update step of cubature Kalman probability hypothesis density filter to replace the single-sensor measurement. Then a cubature Kalman probability hypothesis density filter based on multi-sensor consistency fusion is proposed. Capabilily of the proposed algorithm is illustrated through simulation scenario of multi-sensor multi-target tracking. 展开更多
关键词 multi-target tracking probability hypothesis density(PHD) cubature Kalman filter consistency fusion
下载PDF
Distributed cubature Kalman filter based on observation bootstrap sampling
14
作者 胡振涛 Hu Yumei +2 位作者 Zheng Shanshan Li Xian Guo Zhen 《High Technology Letters》 EI CAS 2016年第2期142-147,共6页
Aiming at the adverse effect caused by observation noise on system state estimation precision,a novel distributed cubature Kalman filter(CKF) based on observation bootstrap sampling is proposed.Firstly,combining with ... Aiming at the adverse effect caused by observation noise on system state estimation precision,a novel distributed cubature Kalman filter(CKF) based on observation bootstrap sampling is proposed.Firstly,combining with the extraction and utilization of the latest observation information and the prior statistical information from observation noise modeling,an observation bootstrap sampling strategy is designed.The objective is to deal with the adverse influence of observation uncertainty by increasing observations information.Secondly,the strategy is dynamically introduced into the cubature Kalman filter,and the distributed fusion framework of filtering realization is constructed.Better filtering precision is obtained by promoting observation reliability without increasing the hardware cost of observation system.Theory analysis and simulation results show the proposed algorithm feasibility and effectiveness. 展开更多
关键词 state estimation cubature Kalman filter (CKF) observation bootstrap sampling distributed weighted fusion
下载PDF
Adaptive cubature Kalman filter based on variational Bayesian inference under measurement uncertainty
15
作者 HU Zhentao JIA Haoqian GONG Delong 《High Technology Letters》 EI CAS 2022年第4期354-362,共9页
A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and rand... A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and random measurement losses.Firstly,the Inverse-Wishart(IW)distribution is chosen to model the covariance matrix of time-varying measurement noise in the cubature Kalman filter framework.Secondly,the Bernoulli random variable is introduced as the judgement factor of the measurement losses,and the Beta distribution is selected as the conjugate prior distribution of measurement loss probability to ensure that the posterior distribution and prior distribution have the same function form.Finally,the joint posterior probability density function of the estimated variables is approximately decoupled by the variational Bayesian inference,and the fixed-point iteration approach is used to update the estimated variables.The simulation results show that the proposed VBACKF algorithm considers the comprehensive effects of system nonlinearity,time-varying measurement noise and unknown measurement loss probability,moreover,effectively improves the accuracy of target state estimation in complex scene. 展开更多
关键词 variational Bayesian inference cubature Kalman filter(CKF) measurement uncertainty Inverse-Wishart(IW)distribution
下载PDF
Robust SLAM using square-root cubature Kalman filter and Huber's GM-estimator
16
作者 徐巍军 Jiang Rongxin +2 位作者 Xie Li Tian Xiang Chen Yaowu 《High Technology Letters》 EI CAS 2016年第1期38-46,共9页
Mobile robot systems performing simultaneous localization and mapping(SLAM) are generally plagued by non-Gaussian noise.To improve both accuracy and robustness under non-Gaussian measurement noise,a robust SLAM algori... Mobile robot systems performing simultaneous localization and mapping(SLAM) are generally plagued by non-Gaussian noise.To improve both accuracy and robustness under non-Gaussian measurement noise,a robust SLAM algorithm is proposed.It is based on the square-root cubature Kalman filter equipped with a Huber' s generalized maximum likelihood estimator(GM-estimator).In particular,the square-root cubature rule is applied to propagate the robot state vector and covariance matrix in the time update,the measurement update and the new landmark initialization stages of the SLAM.Moreover,gain weight matrices with respect to the measurement residuals are calculated by utilizing Huber' s technique in the measurement update step.The measurement outliers are suppressed by lower Kalman gains as merging into the system.The proposed algorithm can achieve better performance under the condition of non-Gaussian measurement noise in comparison with benchmark algorithms.The simulation results demonstrate the advantages of the proposed SLAM algorithm. 展开更多
关键词 square-root cubature Kalman filter simultaneous localization and mapping(SLAM) Huber' s GM-estimator ROBUSTNESS
下载PDF
Fuzzy Adaptive Strong Tracking Cubature Kalman Filter
17
作者 徐晓苏 邹海军 +2 位作者 张涛 刘义亭 宫淑萍 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期731-736,共6页
To solve the problem that the choice of softening factor in conventional adaptive strong tracking filter( STF) greatly relies on the experience and computer simulation,a new concept of softening factor matrix is intro... To solve the problem that the choice of softening factor in conventional adaptive strong tracking filter( STF) greatly relies on the experience and computer simulation,a new concept of softening factor matrix is introduced and a fuzzy adaptive strong tracking cubature Kalman filter( FASTCKF) based on fuzzy logic controller is proposed. This method monitors residual absolute mean and standard deviation of each measurement component with fuzzy logic adaptive controller( FLAC),and adjusts the softening factor matrix dynamically by fuzzy rules,which is capable to modify suboptimal fading factor of STF adaptively and improve the filter's robust adaptive capacity. The simulation results show that the improved filtering performance is superior to the conventional square root cubature Kalman filter( SCKF) and the strong tracking square root cubature Kalman filter( STSCKF). 展开更多
关键词 cubature Kalman filter(CKF) strong tracking filter(STF) fuzzy logic adaptive controller(FLAC) softening factor matrix
下载PDF
基于均方根容积卡尔曼滤波的船舶操纵运动响应模型参数辨识
18
作者 李晴昊 任俊生 华焱 《系统仿真学报》 CAS CSCD 北大核心 2024年第8期1790-1799,共10页
为了解决扩展卡尔曼滤波(extended Kalman filter,EKF)算法在船舶操纵运动模型参数辨识中存在辨识精度低、稳定性差和泛化能力弱的问题,提出了一种基于均方根容积卡尔曼滤波(square root cubature Kalman filter,SRCKF)的辨识算法。在CK... 为了解决扩展卡尔曼滤波(extended Kalman filter,EKF)算法在船舶操纵运动模型参数辨识中存在辨识精度低、稳定性差和泛化能力弱的问题,提出了一种基于均方根容积卡尔曼滤波(square root cubature Kalman filter,SRCKF)的辨识算法。在CKF框架下将方差矩阵的均方根代替原始方差矩阵,使用三角分解对其进行预测和更新以提高辨识的稳定性。将EKF作为对比算法,利用四阶龙格库塔法解算的数值仿真数据,对舵角符合舵机伺服机构变化的船舶二阶非线性响应模型参数进行辨识,并将得到的辨识模型开展泛化能力验证试验。结果表明:SRCKF算法具有比EKF算法更高的辨识精度、稳定性和泛化能力。 展开更多
关键词 参数辨识 SRCKF(square root cubature Kalman filter) 四阶龙格库塔法 舵机伺服机构 响应模型
下载PDF
Adaptive robust cubature Kalman filtering for satellite attitude estimation 被引量:11
19
作者 Zhenbing QIU Huaming QIAN Guoqing WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期806-819,共14页
This paper is concerned with the adaptive robust cubature Kalman filtering problem for the case that the dynamics model error and the measurement model error exist simultaneously in the satellite attitude estimation s... This paper is concerned with the adaptive robust cubature Kalman filtering problem for the case that the dynamics model error and the measurement model error exist simultaneously in the satellite attitude estimation system. By using Hubel-based robust filtering methodology to correct the measurement covariance formulation of cubature Kalman filter, the proposed filtering algorithm could effectively suppress the measurement model error. To further enhance this effect and reduce the impact of the dynamics model error, two different adaptively robust filtering algorithms,one with the optimal adaptive factor based on the estimated covariance matrix of the predicted residuals and the other with multiple fading factors based on strong tracking algorithm, are developed and applied for the satellite attitude estimation. The quaternion is employed to represent the global attitude parameter, and three-dimensional generalized Rodrigues parameters are introduced to define the local attitude error. A multiplicative quaternion error is derived from the local attitude error to maintain quaternion normalization constraint in the filter. Simulation results indicate that the proposed novel algorithm could exhibit higher accuracy and faster convergence compared with the multiplicative extended Kalman filter, the unscented quaternion estimator, and the adaptive robust unscented Kalman filter. 展开更多
关键词 Attitude estimation cubature Kalman filter Multiple fading factors Optimal adaptive factor Robust filtering
原文传递
Wind Estimation for UAV Based on Multi-sensor Information Fusion 被引量:1
20
作者 高艳辉 朱菲菲 +1 位作者 张勇 胡寿松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第1期42-47,共6页
Aiming at the requirements of accurate target positioning and autonomous capability for adapting to the environmental changes of unmanned aerial vehicle(UAV),a new method for wind estimation and airspeed calibration i... Aiming at the requirements of accurate target positioning and autonomous capability for adapting to the environmental changes of unmanned aerial vehicle(UAV),a new method for wind estimation and airspeed calibration is proposed.The method is implemented to obtain both wind speed and wind direction based on the information from a GPS receiver,an air data computer and a magnetic compass,combining with the velocity vector triangle relationships among ground speed,wind speed and air speed.Considering the installation error of Pitot tube,cubature Kalman filter(CKF)is applied to determine proportionality calibration coefficient of true airspeed,thus improving the accuracy of wind field information further.The entire autonomous flight simulation is performed in a constant 2-D wind using a digital simulation platform for UAV.Simulation results show that the wind speed and wind direction can be accurately estimated both in straight line and in turning segment during the path tracking by using the proposed method.The measurement accuracies of the wind speed and wind direction are 0.62 m/s and2.57°,respectively. 展开更多
关键词 wind estimation airspeed calibration unmanned aerial vehicle(UAV) cubature Kalman filter(CKF)
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部