This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are...This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are purely geometrical and that the pararnetric tangent magnitudes are notassigned as in many' curl'e manipulation methods. The knot vector is fixed and the unknowns are thecontrol points and x'eightsf in this respect the technique is fundamentally different from otherswhere knot insertion is allowed.First. the theoretical result3 for the uniform rational cubic B-spline are presented. Then. in theplanar case. the effect of changes to the tangent at a single point and the acceptable bounds for thechange are established so that all the weights and tangent magnitUdes remain positive. Finally, aninteractive procedure for controlling the shape of a planar rational cubic B-spline curve is presented.展开更多
Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing f...Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing from the vertex intersects with the corresponding segments of the two curves, and the point the ray intersecting with the connecting line between the two neighboring vertexes. Different from rational quadratic Bézier curves, the value is generally related with the location of the ray, and the necessary and sufficient condition of the ratio being independent of the ray's location is showed. Also another cross ratio of the following four collinear points are suggested, i.e. one vertex, the points that the ray from the initial vertex intersects respectively with the curve segment, the line connecting the segments end points, and the line connecting the two neighboring vertexes. This cross ratio is concerned only with the ray's location, but not with the weights of the curve. Furthermore, the cross ratio is projective invariant under the projective transformation between the two segments.展开更多
To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate,...To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate, chord error, curvature radius and interpolator cycle are discussed. This kinetic model reduces the cubic polynomial S-shape model and the trigonometry function S-shape model from 15 sections into 3 sections under the precondition of jerk, acceleration and feedrate continuity. Then an optimized Adams algorithm using the difference quotient to replace the derivative is presented to calculate the interpolator cycle parameters. The higher-order derivation in the Taylor expansion algorithm can be avoided by this algorithm. Finally, the simplified design is analyzed by reducing the times of computing the low-degree zero-value B-spline basis function and the simplified De Boor-Cox recursive algorithm is proposed. The simulation analysis indicates that by these algorithms, the feed rate is effectively controlled according to tool path. The calculated amount is decreased and the calculated speed is increased while the machining precision is ensured. The experimental results show that the target parameter can be correctly calculated and these algorithms can be applied to actual systems.展开更多
The principle of real-time look-ahead was introduced and analysed. An adaptive parametric curve interpolator with a real-time look-ahead function was developed for non-uniform rational B-spline (NURBS) curves interpol...The principle of real-time look-ahead was introduced and analysed. An adaptive parametric curve interpolator with a real-time look-ahead function was developed for non-uniform rational B-spline (NURBS) curves interpolation, which considering the maximum acceleration/deceleration of the machine tool. In order to deal with the acceleration/deceleration around the feedrate sensitive corners, the look-ahead function was designed and illustrated. It can detect and adjust the feedrate adaptively. With the help of real-time look-ahead, the acceleration/deceleration can be limited to the range of the machine tool capacity. Thus, feedrate fluctuation is reduced. A NURBS curve interpolation experiment was provided to verify the feasibility and advantages of the proposed interpolator with a real-time look-ahead function.展开更多
We prove upper bounds for the number of rational points on non-singular cubic curves defined over the rationals.The bounds are uniform in the curve and involve the rank of the corresponding Jacobian.The method used in...We prove upper bounds for the number of rational points on non-singular cubic curves defined over the rationals.The bounds are uniform in the curve and involve the rank of the corresponding Jacobian.The method used in the proof is a combination of the "determinant method" with an m-descent on the curve.展开更多
In this paper, using the tools of algebraic geometry we provide sufficient conditions for a holomor-phic foliation in CP(2) to have a rational first integral. Moreover, we obtain an upper bound of the degreesof invari...In this paper, using the tools of algebraic geometry we provide sufficient conditions for a holomor-phic foliation in CP(2) to have a rational first integral. Moreover, we obtain an upper bound of the degreesof invariant algebraic curves of a holomorphic foliation in CP(2). Then we use these results to prove that anyholomorphic foliation of degree 2 does not have cubic limit cycles.展开更多
This paper presents a flexible method for the representation of welded seam based on spline interpolation. In this method, the tool path of welding robot can be generated automatically from a 3D CAD model. This techni...This paper presents a flexible method for the representation of welded seam based on spline interpolation. In this method, the tool path of welding robot can be generated automatically from a 3D CAD model. This technique has been implemented and demonstrated in the FANUC Arc Welding Robot Workstation. According to the method, a software system is developed using VBA of SolidWorks 2006. It offers an interface between SolidWorks and ROBOGUIDE, the off-line programming software of FANUC robot. It combines the strong modeling function of the former and the simulating function of the latter. It also has the capability of with on-line robot. The result data have shown its high accuracy and strong reliability in experiments. This method will improve the intelligence and the flexibility of the welding robot workstation.展开更多
Using vectors between control points(a_i=P_(i+1)-P_i),parameters λ and μ(such that a_(i+1)=λ_(ai+μ_(a_i+2))are used to study the shape classification of planar parametric cubic B-spline curves. The regiosn of λμ...Using vectors between control points(a_i=P_(i+1)-P_i),parameters λ and μ(such that a_(i+1)=λ_(ai+μ_(a_i+2))are used to study the shape classification of planar parametric cubic B-spline curves. The regiosn of λμ space corresponding to different geometric features on the curves are investigated.These results are useful for curve design.展开更多
文摘This paper considers the construction of a rational cubic B-spline curve that willinterpolate a sequence of data points x'+ith specified tangent directions at those points. It is emphasisedthat the constraints are purely geometrical and that the pararnetric tangent magnitudes are notassigned as in many' curl'e manipulation methods. The knot vector is fixed and the unknowns are thecontrol points and x'eightsf in this respect the technique is fundamentally different from otherswhere knot insertion is allowed.First. the theoretical result3 for the uniform rational cubic B-spline are presented. Then. in theplanar case. the effect of changes to the tangent at a single point and the acceptable bounds for thechange are established so that all the weights and tangent magnitUdes remain positive. Finally, aninteractive procedure for controlling the shape of a planar rational cubic B-spline curve is presented.
文摘Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing from the vertex intersects with the corresponding segments of the two curves, and the point the ray intersecting with the connecting line between the two neighboring vertexes. Different from rational quadratic Bézier curves, the value is generally related with the location of the ray, and the necessary and sufficient condition of the ratio being independent of the ray's location is showed. Also another cross ratio of the following four collinear points are suggested, i.e. one vertex, the points that the ray from the initial vertex intersects respectively with the curve segment, the line connecting the segments end points, and the line connecting the two neighboring vertexes. This cross ratio is concerned only with the ray's location, but not with the weights of the curve. Furthermore, the cross ratio is projective invariant under the projective transformation between the two segments.
基金The Doctoral Fund of Ministry of Education of China(No.20090092110052)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.12KJA460002)College Industrialization Project of Jiangsu Province(No.JHB2012-21)
文摘To realize the high precision and real-time interpolation of the NURBS (non-uniform rational B-spline) curve, a kinetic model based on the modified sigmoid function is proposed. The constraints of maximum feed rate, chord error, curvature radius and interpolator cycle are discussed. This kinetic model reduces the cubic polynomial S-shape model and the trigonometry function S-shape model from 15 sections into 3 sections under the precondition of jerk, acceleration and feedrate continuity. Then an optimized Adams algorithm using the difference quotient to replace the derivative is presented to calculate the interpolator cycle parameters. The higher-order derivation in the Taylor expansion algorithm can be avoided by this algorithm. Finally, the simplified design is analyzed by reducing the times of computing the low-degree zero-value B-spline basis function and the simplified De Boor-Cox recursive algorithm is proposed. The simulation analysis indicates that by these algorithms, the feed rate is effectively controlled according to tool path. The calculated amount is decreased and the calculated speed is increased while the machining precision is ensured. The experimental results show that the target parameter can be correctly calculated and these algorithms can be applied to actual systems.
文摘The principle of real-time look-ahead was introduced and analysed. An adaptive parametric curve interpolator with a real-time look-ahead function was developed for non-uniform rational B-spline (NURBS) curves interpolation, which considering the maximum acceleration/deceleration of the machine tool. In order to deal with the acceleration/deceleration around the feedrate sensitive corners, the look-ahead function was designed and illustrated. It can detect and adjust the feedrate adaptively. With the help of real-time look-ahead, the acceleration/deceleration can be limited to the range of the machine tool capacity. Thus, feedrate fluctuation is reduced. A NURBS curve interpolation experiment was provided to verify the feasibility and advantages of the proposed interpolator with a real-time look-ahead function.
文摘We prove upper bounds for the number of rational points on non-singular cubic curves defined over the rationals.The bounds are uniform in the curve and involve the rank of the corresponding Jacobian.The method used in the proof is a combination of the "determinant method" with an m-descent on the curve.
基金This work was partially supported by the National Natural Science Foundation of China (Grant No. 19901013).
文摘In this paper, using the tools of algebraic geometry we provide sufficient conditions for a holomor-phic foliation in CP(2) to have a rational first integral. Moreover, we obtain an upper bound of the degreesof invariant algebraic curves of a holomorphic foliation in CP(2). Then we use these results to prove that anyholomorphic foliation of degree 2 does not have cubic limit cycles.
基金This work was supported by Tianjin Natural Science Fund Supporting Project (05YFJZJ)
文摘This paper presents a flexible method for the representation of welded seam based on spline interpolation. In this method, the tool path of welding robot can be generated automatically from a 3D CAD model. This technique has been implemented and demonstrated in the FANUC Arc Welding Robot Workstation. According to the method, a software system is developed using VBA of SolidWorks 2006. It offers an interface between SolidWorks and ROBOGUIDE, the off-line programming software of FANUC robot. It combines the strong modeling function of the former and the simulating function of the latter. It also has the capability of with on-line robot. The result data have shown its high accuracy and strong reliability in experiments. This method will improve the intelligence and the flexibility of the welding robot workstation.
文摘Using vectors between control points(a_i=P_(i+1)-P_i),parameters λ and μ(such that a_(i+1)=λ_(ai+μ_(a_i+2))are used to study the shape classification of planar parametric cubic B-spline curves. The regiosn of λμ space corresponding to different geometric features on the curves are investigated.These results are useful for curve design.