在加性高斯白噪声的影响下,对于三阶多项式相位信号(CPS),经典的字典学习算法,如K-means Singular Value Decomposition(K-SVD),递归最小二乘字典学习算法(RLS-DLA)和K-means Singular Value Decomposition Denoising(K-SVDD)得到的学...在加性高斯白噪声的影响下,对于三阶多项式相位信号(CPS),经典的字典学习算法,如K-means Singular Value Decomposition(K-SVD),递归最小二乘字典学习算法(RLS-DLA)和K-means Singular Value Decomposition Denoising(K-SVDD)得到的学习字典,通过稀疏分解,不能有效去除信号的噪声。为此,该文提出了针对CPS去噪的字典学习算法。该算法首先利用RLS-DLA对的字典进行学习;其次采用非线性最小二乘(NLLS)法修改了该算法对字典更新的部分;最后对训练后的字典通过对信号的稀疏表示得到重构信号。对比其它的字典学习算法,该算法的信噪比(SNR)值明显高于其它算法,而均方误差(MSE)显著低于其它算法,具有明显的降噪效果。实验结果表明,采用该算法得到的字典通过稀疏分解,信号的平均信噪比比K-SVD,RLS-DLS和K-SVDD高出9.55 dB,13.94 dB和9.76 dB。展开更多
提出了一种基于改进三次相位函数的多分量线性调频(linear frequency modulation,LFM)信号参数估计算法。该算法只需要通过二阶非线性变换在信号参数空间形成最大值来估计LFM信号参数。在多分量的情况下,讨论了信号自项和交叉项与时间...提出了一种基于改进三次相位函数的多分量线性调频(linear frequency modulation,LFM)信号参数估计算法。该算法只需要通过二阶非线性变换在信号参数空间形成最大值来估计LFM信号参数。在多分量的情况下,讨论了信号自项和交叉项与时间的关系,发现自项和交叉项对时间有不同的依赖性。为了克服交叉项的影响,提出了加权平均的方法来改进算法。然后推导了三次相位函数的FFT快速算法,并进一步采用了舍入最近采样点的方法改进算法,使其可以应用于实际的离散采样系统。仿真试验表明,此方法在低信噪比下估计多分量LFM信号参数效果显著,其快速算法在大大降低运算量的同时,与原算法相比较,仍然保持了良好的估计性能。展开更多
文摘提出了一种基于改进三次相位函数的多分量线性调频(linear frequency modulation,LFM)信号参数估计算法。该算法只需要通过二阶非线性变换在信号参数空间形成最大值来估计LFM信号参数。在多分量的情况下,讨论了信号自项和交叉项与时间的关系,发现自项和交叉项对时间有不同的依赖性。为了克服交叉项的影响,提出了加权平均的方法来改进算法。然后推导了三次相位函数的FFT快速算法,并进一步采用了舍入最近采样点的方法改进算法,使其可以应用于实际的离散采样系统。仿真试验表明,此方法在低信噪比下估计多分量LFM信号参数效果显著,其快速算法在大大降低运算量的同时,与原算法相比较,仍然保持了良好的估计性能。