The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter stra...The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter strategy and a parallel communication strategy are proposed to further improve the Cuckoo Search(CS)algorithm.This strategy greatly improves the convergence speed and accuracy of the algorithm and strengthens the algorithm’s ability to jump out of the local optimal.This paper compares the optimization performance of Parallel Adaptive Cuckoo Search(PACS)with CS,Parallel Cuckoo Search(PCS),Particle Swarm Optimization(PSO),Sine Cosine Algorithm(SCA),Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Differential Evolution(DE)and Artificial Bee Colony(ABC)algorithms by using the CEC-2013 test function.The results show that PACS algorithmoutperforms other algorithms in 20 of 28 test functions.Due to the superior performance of PACS algorithm,this paper uses it to solve the problem of the rectangular layout.Experimental results show that this scheme has a significant effect,and the material utilization rate is improved from89.5%to 97.8%after optimization.展开更多
The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degrad...The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degradation of output power quality and efficiency.It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms,and their performance in tracking the Global Maximum Power Point(GMPP)varies.Thus,a Cuckoo search algorithm(CSA)combined with the Incremental conductance Algorithm(INC)is proposed(CSA-INC)is put forward for the MPPT method of photovoltaic power generation.The method can improve the tracking speed by more than 52%compared with the traditional Cuckoo Search Algorithm(CSA),and the results of the study using this algorithm are compared with the popular Particle Swarm Optimization(PSO)and the Gravitational Search Algorithm(GSA).CSA-INC has an average tracking efficiency of 99.99%and an average tracking time of 0.19 s when tracking the GMPP,which improves PV power generation’s efficiency and power quality.展开更多
The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DA...The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DADCS)is proposed,whose core is to adjust allocation scheme of limited jamming resource of aircraft formation in real time to maintain the best jamming effectiveness against netted radar system.Firstly,considering the information fusion rules and different working modes of the netted radar system,a two-factor jamming effectiveness evaluation function is constructed,detection probability and aiming probability are adopted to characterize jamming effectiveness against netted radar system in searching and tracking mode,respectively.Then a nonconvex optimization model for cooperatively jamming netted radar system is established.Finally,a dynamic adaptive discrete cuckoo search algorithm(DADCS)is constructed by improving path update strategies and introducing a global learning mechanism,and a three-step solution method is proposed subsequently.Simulation results are provided to demonstrate the advantages of the proposed optimization strategy and the effectiveness of the improved algorithm.展开更多
This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment ...This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method.展开更多
In the contemporary era,the abundant availability of health information through internet and mobile technology raises concerns.Safeguarding and maintaining the confidentiality of patients’medical data becomes paramou...In the contemporary era,the abundant availability of health information through internet and mobile technology raises concerns.Safeguarding and maintaining the confidentiality of patients’medical data becomes paramount when sharing such information with authorized healthcare providers.Although electronic patient records and the internet have facilitated the exchange of medical information among healthcare providers,concerns persist regarding the security of the data.The security of Electronic Health Record Systems(EHRS)can be improved by employing the Cuckoo Search Algorithm(CS),the SHA-256 algorithm,and the Elliptic Curve Cryptography(ECC),as proposed in this study.The suggested approach involves usingCS to generate the ECCprivate key,thereby enhancing the security of data storage in EHR.The study evaluates the proposed design by comparing encoding and decoding times with alternative techniques like ECC-GA-SHA-256.The research findings indicate that the proposed design achieves faster encoding and decoding times,completing 125 and 175 iterations,respectively.Furthermore,the proposed design surpasses other encoding techniques by exhibiting encoding and decoding times that are more than 15.17%faster.These results imply that the proposed design can significantly enhance the security and performance of EHRs.Through the utilization of CS,SHA-256,and ECC,this study presents promising methods for addressing the security challenges associated with EHRs.展开更多
A modified cuckoo search(CS) algorithm is proposed to solve economic dispatch(ED) problems that have nonconvex, non-continuous or non-linear solution spaces considering valve-point effects, prohibited operating zones,...A modified cuckoo search(CS) algorithm is proposed to solve economic dispatch(ED) problems that have nonconvex, non-continuous or non-linear solution spaces considering valve-point effects, prohibited operating zones, transmission losses and ramp rate limits. Comparing with the traditional cuckoo search algorithm, we propose a self-adaptive step size and some neighbor-study strategies to enhance search performance.Moreover, an improved lambda iteration strategy is used to generate new solutions. To show the superiority of the proposed algorithm over several classic algorithms, four systems with different benchmarks are tested. The results show its efficiency to solve economic dispatch problems, especially for large-scale systems.展开更多
We study the parameter estimation of a nonlinear chaotic system,which can be essentially formulated as a multidimensional optimization problem.In this paper,an orthogonal learning cuckoo search algorithm is used to es...We study the parameter estimation of a nonlinear chaotic system,which can be essentially formulated as a multidimensional optimization problem.In this paper,an orthogonal learning cuckoo search algorithm is used to estimate the parameters of chaotic systems.This algorithm can combine the stochastic exploration of the cuckoo search and the exploitation capability of the orthogonal learning strategy.Experiments are conducted on the Lorenz system and the Chen system.The proposed algorithm is used to estimate the parameters for these two systems.Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to the particle swarm optimization and the genetic algorithm when considering the quality of the solutions obtained.展开更多
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co...The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.展开更多
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In...Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.展开更多
Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much at...Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.展开更多
The control allocation problem of aircraft whose control inputs contain integer constraints is investigated. The control allocation problem is described as an integer programming problem and solved by the cuckoo searc...The control allocation problem of aircraft whose control inputs contain integer constraints is investigated. The control allocation problem is described as an integer programming problem and solved by the cuckoo search algorithm. In order to enhance the search capability of the cuckoo search algorithm, the adaptive detection probability and amplification factor are designed. Finally, the control allocation method based on the proposed improved cuckoo search algorithm is applied to the tracking control problem of the innovative control effector aircraft. The comparative simulation results demonstrate the superiority and effectiveness of the proposed improved cuckoo search algorithm in control allocation of aircraft.展开更多
Refineries often need to find similar crude oil to replace the scarce crude oil for stabilizing the feedstock property. We introduced the method for calculation of crude blended properties firstly, and then created a ...Refineries often need to find similar crude oil to replace the scarce crude oil for stabilizing the feedstock property. We introduced the method for calculation of crude blended properties firstly, and then created a crude oil selection and blending optimization model based on the data of crude oil property. The model is a mixed-integer nonlinear programming(MINLP) with constraints, and the target is to maximize the similarity between the blended crude oil and the objective crude oil. Furthermore, the model takes into account the selection of crude oils and their blending ratios simultaneously, and transforms the problem of looking for similar crude oil into the crude oil selection and blending optimization problem. We applied the Improved Cuckoo Search(ICS) algorithm to solving the model. Through the simulations, ICS was compared with the genetic algorithm, the particle swarm optimization algorithm and the CPLEX solver. The results show that ICS has very good optimization efficiency. The blending solution can provide a reference for refineries to find the similar crude oil. And the method proposed can also give some references to selection and blending optimization of other materials.展开更多
Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor ...Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor networks contain several nodes in its terrain region. Reducing the energy consumption over the WSCN has its significance since the nodes are battery powered. Various research methodologies were proposed by researchers in this area. One of the bio-inspired computing paradigms named Cuckoo search algorithm is used in this research work for finding the energy efficient path and routing is performed. Several performance metrics are taken into account for determining the performance of the proposed routing protocol such as throughput, packet delivery ratio, energy consumption and delay. Simulation is performed using NS2 and the results shows that the proposed routing protocol is better in terms of average throughput, and average energy consumption.展开更多
In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algo...In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algorithm, the model is optimized to a certain extent. Through analysis, it is proved that the improved algorithm has higher computational accuracy and can effectively improve the global convergence.展开更多
基金funded by the NationalKey Research and Development Program of China under Grant No.11974373.
文摘The meta-heuristic algorithm is a global probabilistic search algorithm for the iterative solution.It has good performance in global optimization fields such as maximization.In this paper,a new adaptive parameter strategy and a parallel communication strategy are proposed to further improve the Cuckoo Search(CS)algorithm.This strategy greatly improves the convergence speed and accuracy of the algorithm and strengthens the algorithm’s ability to jump out of the local optimal.This paper compares the optimization performance of Parallel Adaptive Cuckoo Search(PACS)with CS,Parallel Cuckoo Search(PCS),Particle Swarm Optimization(PSO),Sine Cosine Algorithm(SCA),Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Differential Evolution(DE)and Artificial Bee Colony(ABC)algorithms by using the CEC-2013 test function.The results show that PACS algorithmoutperforms other algorithms in 20 of 28 test functions.Due to the superior performance of PACS algorithm,this paper uses it to solve the problem of the rectangular layout.Experimental results show that this scheme has a significant effect,and the material utilization rate is improved from89.5%to 97.8%after optimization.
基金supported by the Natural Science Foundation of Gansu Province(Grant No.21JR7RA321)。
文摘The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degradation of output power quality and efficiency.It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms,and their performance in tracking the Global Maximum Power Point(GMPP)varies.Thus,a Cuckoo search algorithm(CSA)combined with the Incremental conductance Algorithm(INC)is proposed(CSA-INC)is put forward for the MPPT method of photovoltaic power generation.The method can improve the tracking speed by more than 52%compared with the traditional Cuckoo Search Algorithm(CSA),and the results of the study using this algorithm are compared with the popular Particle Swarm Optimization(PSO)and the Gravitational Search Algorithm(GSA).CSA-INC has an average tracking efficiency of 99.99%and an average tracking time of 0.19 s when tracking the GMPP,which improves PV power generation’s efficiency and power quality.
文摘The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DADCS)is proposed,whose core is to adjust allocation scheme of limited jamming resource of aircraft formation in real time to maintain the best jamming effectiveness against netted radar system.Firstly,considering the information fusion rules and different working modes of the netted radar system,a two-factor jamming effectiveness evaluation function is constructed,detection probability and aiming probability are adopted to characterize jamming effectiveness against netted radar system in searching and tracking mode,respectively.Then a nonconvex optimization model for cooperatively jamming netted radar system is established.Finally,a dynamic adaptive discrete cuckoo search algorithm(DADCS)is constructed by improving path update strategies and introducing a global learning mechanism,and a three-step solution method is proposed subsequently.Simulation results are provided to demonstrate the advantages of the proposed optimization strategy and the effectiveness of the improved algorithm.
基金supported by the National Natural Science Foundation of China(61971470).
文摘This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method.
文摘In the contemporary era,the abundant availability of health information through internet and mobile technology raises concerns.Safeguarding and maintaining the confidentiality of patients’medical data becomes paramount when sharing such information with authorized healthcare providers.Although electronic patient records and the internet have facilitated the exchange of medical information among healthcare providers,concerns persist regarding the security of the data.The security of Electronic Health Record Systems(EHRS)can be improved by employing the Cuckoo Search Algorithm(CS),the SHA-256 algorithm,and the Elliptic Curve Cryptography(ECC),as proposed in this study.The suggested approach involves usingCS to generate the ECCprivate key,thereby enhancing the security of data storage in EHR.The study evaluates the proposed design by comparing encoding and decoding times with alternative techniques like ECC-GA-SHA-256.The research findings indicate that the proposed design achieves faster encoding and decoding times,completing 125 and 175 iterations,respectively.Furthermore,the proposed design surpasses other encoding techniques by exhibiting encoding and decoding times that are more than 15.17%faster.These results imply that the proposed design can significantly enhance the security and performance of EHRs.Through the utilization of CS,SHA-256,and ECC,this study presents promising methods for addressing the security challenges associated with EHRs.
基金supported in part by the National Key Research and Development Program of China(2017YFB0306400)in part by the National Natural Science Foundation of China(61573089,71472080,71301066)Liaoning Province Dr.Research Foundation of China(20175032)
文摘A modified cuckoo search(CS) algorithm is proposed to solve economic dispatch(ED) problems that have nonconvex, non-continuous or non-linear solution spaces considering valve-point effects, prohibited operating zones, transmission losses and ramp rate limits. Comparing with the traditional cuckoo search algorithm, we propose a self-adaptive step size and some neighbor-study strategies to enhance search performance.Moreover, an improved lambda iteration strategy is used to generate new solutions. To show the superiority of the proposed algorithm over several classic algorithms, four systems with different benchmarks are tested. The results show its efficiency to solve economic dispatch problems, especially for large-scale systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60473042,60573067 and 60803102)
文摘We study the parameter estimation of a nonlinear chaotic system,which can be essentially formulated as a multidimensional optimization problem.In this paper,an orthogonal learning cuckoo search algorithm is used to estimate the parameters of chaotic systems.This algorithm can combine the stochastic exploration of the cuckoo search and the exploitation capability of the orthogonal learning strategy.Experiments are conducted on the Lorenz system and the Chen system.The proposed algorithm is used to estimate the parameters for these two systems.Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to the particle swarm optimization and the genetic algorithm when considering the quality of the solutions obtained.
基金supported by the National Natural Science Foundation of China(51875465)
文摘The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.
基金supported by the National Key Research and Development Program of China [grant number2017YFA0604500]
文摘Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.
基金Projects([2013]2082,[2009]2061)supported by the Science Technology Foundation of Guizhou Province,ChinaProject([2013]140)supported by the Excellent Science Technology Innovation Talents in Universities of Guizhou Province,ChinaProject(2008040)supported by the Natural Science Research in Education Department of Guizhou Province,China
文摘Constrained optimization problems are very important as they are encountered in many science and engineering applications.As a novel evolutionary computation technique,cuckoo search(CS) algorithm has attracted much attention and wide applications,owing to its easy implementation and quick convergence.A hybrid cuckoo pattern search algorithm(HCPS) with feasibility-based rule is proposed for solving constrained numerical and engineering design optimization problems.This algorithm can combine the stochastic exploration of the cuckoo search algorithm and the exploitation capability of the pattern search method.Simulation and comparisons based on several well-known benchmark test functions and structural design optimization problems demonstrate the effectiveness,efficiency and robustness of the proposed HCPS algorithm.
基金supported by the National Natural Science Foundation of China(61273083 and 61374012)
文摘The control allocation problem of aircraft whose control inputs contain integer constraints is investigated. The control allocation problem is described as an integer programming problem and solved by the cuckoo search algorithm. In order to enhance the search capability of the cuckoo search algorithm, the adaptive detection probability and amplification factor are designed. Finally, the control allocation method based on the proposed improved cuckoo search algorithm is applied to the tracking control problem of the innovative control effector aircraft. The comparative simulation results demonstrate the superiority and effectiveness of the proposed improved cuckoo search algorithm in control allocation of aircraft.
基金supported by the National Natural Science Foundation of China(No.21365008)the Science Foundation of Guangxi province of China(No.2012GXNSFAA053230)
文摘Refineries often need to find similar crude oil to replace the scarce crude oil for stabilizing the feedstock property. We introduced the method for calculation of crude blended properties firstly, and then created a crude oil selection and blending optimization model based on the data of crude oil property. The model is a mixed-integer nonlinear programming(MINLP) with constraints, and the target is to maximize the similarity between the blended crude oil and the objective crude oil. Furthermore, the model takes into account the selection of crude oils and their blending ratios simultaneously, and transforms the problem of looking for similar crude oil into the crude oil selection and blending optimization problem. We applied the Improved Cuckoo Search(ICS) algorithm to solving the model. Through the simulations, ICS was compared with the genetic algorithm, the particle swarm optimization algorithm and the CPLEX solver. The results show that ICS has very good optimization efficiency. The blending solution can provide a reference for refineries to find the similar crude oil. And the method proposed can also give some references to selection and blending optimization of other materials.
文摘Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor networks contain several nodes in its terrain region. Reducing the energy consumption over the WSCN has its significance since the nodes are battery powered. Various research methodologies were proposed by researchers in this area. One of the bio-inspired computing paradigms named Cuckoo search algorithm is used in this research work for finding the energy efficient path and routing is performed. Several performance metrics are taken into account for determining the performance of the proposed routing protocol such as throughput, packet delivery ratio, energy consumption and delay. Simulation is performed using NS2 and the results shows that the proposed routing protocol is better in terms of average throughput, and average energy consumption.
文摘In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algorithm, the model is optimized to a certain extent. Through analysis, it is proved that the improved algorithm has higher computational accuracy and can effectively improve the global convergence.