期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Attention-CS-LSTM乙烯裂解炉管温度预测
1
作者 张子默 崔得龙 《长江信息通信》 2024年第4期43-46,共4页
在乙烯生产过程中,针对乙烯裂解炉管温度难监测的情况,需要对传统的温度测量方法进行改进,通过数据模型下的优化操作可以有效预测乙烯裂解炉出口温度,当出现温度波动时进行干预,提高产品效率和生产安全。文章将改进的布谷鸟算法优化LSTM... 在乙烯生产过程中,针对乙烯裂解炉管温度难监测的情况,需要对传统的温度测量方法进行改进,通过数据模型下的优化操作可以有效预测乙烯裂解炉出口温度,当出现温度波动时进行干预,提高产品效率和生产安全。文章将改进的布谷鸟算法优化LSTM(CS-LSTM)应用于真实工业数据,并与四种模型进行比较。仿真结果表明,采用Attention-CS-LSTM预测准确率明显提高,且具有良好的稳态准确度,该方法的温度预测准确率为95%。 展开更多
关键词 布谷鸟算法 LSTM 注意力机制
下载PDF
基于蚁群算法优化的布谷鸟搜索算法 被引量:4
2
作者 张烈平 何佳洁 +2 位作者 于滟琳 杨振宇 骆颖雄 《微电子学与计算机》 CSCD 北大核心 2018年第12期21-26,共6页
针对标准布谷鸟搜索算法采用Levy飞行机制生成新的鸟巢,使得每次更新的鸟巢位置的随机性较大的问题,提出一种蚁群算法优化的布谷鸟搜索算法.首先,提出的算法将待更新的鸟巢位置作为蚁群优化算法的一组初始解在极小的范围内进行搜索寻优... 针对标准布谷鸟搜索算法采用Levy飞行机制生成新的鸟巢,使得每次更新的鸟巢位置的随机性较大的问题,提出一种蚁群算法优化的布谷鸟搜索算法.首先,提出的算法将待更新的鸟巢位置作为蚁群优化算法的一组初始解在极小的范围内进行搜索寻优.之后,将此次蚁群优化算法搜索所得的解作为新的候选解.当蚁群优化算法搜索寻优的候选解优于Levy飞行产生的候选解时,替换掉Levy飞行的候选解.最后,再进行布谷鸟搜索算法择优算子,根据遗弃概率替换新的鸟巢位置,实现更新后的鸟巢位置更加趋向于最优解.通过六个典型的测试函数将提出的算法与标准布谷鸟算法进行了寻优性能比较.实验结果表明,提出的算法能够提升布谷鸟搜索算法候选解的质量,提高算法的收敛速度和收敛精度。 展开更多
关键词 Levy飞行 布谷鸟搜索算法 蚁群优化算法 鸟巢位置更新策略
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部