To understand the inter-hybridization between Cucumis ssp.plants,we used 150 melon varieties as female parents to cross with Cucumis metuliferus and Cucumis anguria.Only melon accessions V2 and V129 set fruits,but see...To understand the inter-hybridization between Cucumis ssp.plants,we used 150 melon varieties as female parents to cross with Cucumis metuliferus and Cucumis anguria.Only melon accessions V2 and V129 set fruits,but seeds from fruits V2(V129)×C.metuliferus were abortive.A few of seeds from the bottom of fruit V2(V129)×C.anguria were fertile.Sequence-related amplified polymorphism(SRAP)molecular markers were used to analyze the progenies of inter-specific hybridization between C.anguria and melon V129.One pair primer(E14/M2)was found effective in amplification on male parent characteristic bands from the hybrids,suggesting that some DNA exchange had happened between C.anguria and melon V129.This study provided data for analyzing the mechanism of inter-hybridization between Cucumis plants.展开更多
[Objective] The study was carried out to research the adaptability of Cucumis hystrix Chakr.under aluminum salt stress.[Method] Using Cucumis hystrix Chakr.and three cultivated cucumbers as tested materials,the change...[Objective] The study was carried out to research the adaptability of Cucumis hystrix Chakr.under aluminum salt stress.[Method] Using Cucumis hystrix Chakr.and three cultivated cucumbers as tested materials,the change of physiological indexes including POD activity,SOD activity,electrolyte leakage and the content of malondialdehyde(MDA),proline(Pro)content and soluble sugar were studied.[Result] The POD activity,SOD activity,proline content and soluble sugar content of Cucumis hystrix were higher than these of cultivated cucumbers,while electrolyte leakage and MDA content were lower,and it showed that Cucumis hystrix had better adaptability under aluminum salt stress.[Conclusion] Our study could lay a foundation for the improvement of cultivated cucumber by using the excellent characteristics of Cucumis hystrix.展开更多
Spectrin-like protein has been found in a variety of plant cells. In this study, electron microscopic observation of immuno-gold labelled preparations from the leaf petiole of cucumber ( Cucumis sativus L.) shows that...Spectrin-like protein has been found in a variety of plant cells. In this study, electron microscopic observation of immuno-gold labelled preparations from the leaf petiole of cucumber ( Cucumis sativus L.) shows that it also exists in the sieve element-companion cell (SE-CC) complex, being widely distributed in P-protein filaments and sieve element reticulum (SER), in the cytoplasm and mitochondrial membrane of companion cell (CC) and in the branched plasmodesmata between sieve element (SE) and CC as well. The results suggest that this protein could be synthesized in CC and transferred to SE through plasmodesmata. Western blotting showed that spectrin-like protein existed in the protein of phloem exudate of cucumber, and its molecular weight was about 260 kD.展开更多
Genetic transformation is an important technique for functional genomics study and genetic improvement of plants. Until now, Agrobacterium-mediated transformation methods using cotyledon as explants has been the major...Genetic transformation is an important technique for functional genomics study and genetic improvement of plants. Until now, Agrobacterium-mediated transformation methods using cotyledon as explants has been the major approach for cucumber, and its frequency has been up to 23%. For example, significantly enhancement of the transformation efficiency of this plant species was achieved from the cotyledon explants of the cultivar Poinsett 76 infected by Agrobacterium strains EHA105 with efficient positive selection system in lots of experiments. This review is to summarize some key factors influencing cucumber regeneration and genetic transformation, including target genes, selection systems and the ways of transgene introduction, and then to put forward some strategies for the increasing of cucumber transformation efficiency. In the future, it is high possible for cucumber to be potential bioreactor to produce vaccine and biomaterials for human beings.展开更多
Cucumber powdery mildew is one of the most destructive diseases of cucumber throughout the world. In the present study, inheritance of powdery mildew resistance in three crosses, and linkage of resistance with amplifi...Cucumber powdery mildew is one of the most destructive diseases of cucumber throughout the world. In the present study, inheritance of powdery mildew resistance in three crosses, and linkage of resistance with amplified fragment length polymorphism (AFLP) markers are studied to formulate efficient strategies for breeding cultivars resistant to powdery mildew. The joint analysis of multiple generations and AFLP technique has been applied in this study. The best model is the one with two major genes, additive, dominant, and epistatic effects, plus polygenes with additive, dominant, and epistatic effects (E-l-0 model). The heritabilities of the major genes varied from 64.26% to 97.82%, and susceptibility was incompletely dominant for the two major genes in the three crosses studied. The additive effects of the two major genes and the dominant effect of the second major gene were high, and the epistatic effect of the additive-dominant between the two major genes was the highest in cross I . In cross II, the absolute value of the additive effect, dominant effect, and potential ratio of the first major gene were far higher than those of the second major gene, and the epistatic effect of the additive-additive was the highest. The genetic parameters of the two major genes in cross III were similar to those in cross II. Correlation and regression analyses showed that marker E25/M63-103 was linked to a susceptible gene controlling powdery mildew resistance. The marker could account for 19.98% of the phenotypic variation. When the marker was tested on a diverse set of 29 cucumber lines, the correlation between phenotype and genotype was not significant, which suggested cultivar specialty of gene expression or different methods of resistance to powdery mildew. The target DNA fragment was 103 bp in length, and only a small part was found to be homologous to DNA in the other species evaluated, which indicated that it was unique to the cucumber genome.展开更多
Interspecific hybridization and allopolyploidization contribute to the improvement of many important crops. Recently, we successfully developed an amphidiploid from an interspecific cross between cucumber(Cucumis sati...Interspecific hybridization and allopolyploidization contribute to the improvement of many important crops. Recently, we successfully developed an amphidiploid from an interspecific cross between cucumber(Cucumis sativus, 2n = 2x = 14) and its relative C. hystrix(2n = 2x = 24) followed by chemical induction of chromosome doubling. The resulting allotetraploid plant was self-pollinated for three generations. The fertility and seed set of the amphidiploid plants were very low. In this study, we investigated the meiotic chromosome behavior in pollen mother cells with the aid of fluorescence in situ hybridization, aiming to identify the reasons for the low fertility and seed set in the amphidiploid plants. Homologous chromosome pairing appeared normal, but chromosome laggards were common, owing primarily to asynchronous meiosis of chromosomes from the two donor genomes. We suggest that asynchronous meiotic rhythm between the two parental genomes is the main reason for the low fertility and low seed set of the C. hystrix–cucumber amphidiploid plants.展开更多
Studies on the reproduction and cytogenetic characterization of a primary amphidiploid Cucumis species C. hytivus Chen and Kirkbride (2n = 4x = 38) indicated that a more comprehensive cytogenetic analysis of this spec...Studies on the reproduction and cytogenetic characterization of a primary amphidiploid Cucumis species C. hytivus Chen and Kirkbride (2n = 4x = 38) indicated that a more comprehensive cytogenetic analysis of this species and its first selfed progeny would increase its potential utility in cucumber improvement. With tendrils used as source materials for mitotic analysis, chromosome numbers in all selfed progenies were 2n = 38, confirming chromosomal stability in this synthetic amphidiploid species. Detailed meiotic processes were described by comparing the primary and the selfed amphidiploids. Meiotic abnormalities, such as chromosome lagging, unequal separation, chromosome multi-polarization and polyads were observed frequently in all amphidiploid plants except for the selfed no.8, in which meiosis was arrested prior to metaphase Ⅰ. Generally, the frequency of multivalents was higher and the configurations were more complex in the selfed progenies, demonstrating a more extensive genetic exchange between cucumber and C. hystrix Chakr. Genome separation between cucumber and C. hystrix was observed through prophase Ⅰ to anaphase Ⅰ in both generations of the amphidiploids. Consequently, in addition to n = 19, a new gamete with n = 7 was produced, which was confirmed by the chromosome counts 2n = 14 in the backcrossing progenies from cucumber × amphidiploid mating. Fertility varied among the selfed amphidiploid plants. The selfed plant no.1 was found to have an improved fertility (e.g., pollen staining ability 40.8% and 25.6 seeds per fruit) and then was used as source germplasm in further introgression and gene exchange experiments.展开更多
Melon(Cucumis melo L.)production is often restricted by a plethora of pests and diseases,including powdery mildew and downy mildew caused respectively by the fungal species Podosphaera xanthii/Golovinomyces orontii an...Melon(Cucumis melo L.)production is often restricted by a plethora of pests and diseases,including powdery mildew and downy mildew caused respectively by the fungal species Podosphaera xanthii/Golovinomyces orontii and oomycete species Pseudoperonospora cubensis.Many efforts have been directed on identification of resistant sources by screening(wild)melon germplasm.In the current review,we summarized such efforts from various publications of the last 50 plus years.Resistance to powdery mildew has been identified in 239 melon accessions and downy mildew resistance in 452 accessions of both C.melo and the wild relative species C.figarei.Among the resistance sources,C.melo var.cantalupensis accessions PMR 45,PMR 5,PMR 6,and WMR 29 as well as C.melo var.momordica accessions PI 124111,PI 124112,and PI 414723 have been considered as the most valuable germplasm because multiple resistance genes have been identified from these accessions and are widely used in melon resistance breeding.Further genetic mapping in a number of resistant sources has enabled identification of 25 dominant genes,two recessive genes and seven QTLs conferring powdery mildew resistance,as well as eight dominant genes and 11 QTLs for downy mildew resistances.Based on the reported sequences of associated markers,we anchored physically(many of)these genes and QTLs to chromosomes of the melon cv.DHL92 genome.In addition to presenting a comprehensive overview on powdery mildew and downy mildew resistance in(wild)melon germplasm,we suggest strategies aiming at breeding melon with durable and broad-spectrum resistance to pathogens and pests.展开更多
Melon is an important horticultural crop with extensive diversity in many horticultural groups.To explore its genomic diversity,it is necessary to assemble more high-quality complete genomes from different melon acces...Melon is an important horticultural crop with extensive diversity in many horticultural groups.To explore its genomic diversity,it is necessary to assemble more high-quality complete genomes from different melon accessions.Meanwhile,a large number of QTLs have been mapped in several studies.Integration of the published QTLs onto a complete genome can provide more accurate information for candidate gene cloning.To address these problems,a telomere-to-telomere(T2T)genome of the elite melon landrace Kuizilikjiz(Cucumis melo L.var.inodorus)was de novo assembled and all the published QTLs were projected onto it in this study.The results showed that a high-quality Kuizilikjiz genome with the size of 379.2 Mb and N50 of 31.7 Mb was de novo assembled using the combination of short reads,PacBio high-fidelity long reads,Hi-C data,and a high-density genetic map.Each chromosome contained the centromere and telomeres at both ends.A large number of structural variations were observed between Kuizilikjiz and the other published genomes.A total of 1294 QTLs published in 67 studies were collected and projected onto the T2T genome.Several clustered,co-localized,and overlapped QTLs were determined.Furthermore,20 stable meta-QTLs were identified,which significantly reduced the mapping intervals of the initial QTLs and greatly facilitated identification of the candidate genes.Collectively,the T2T genome assembly together with the numerous projected QTLs will not only broaden the high-quality genome resources but also provide valuable and abundant QTL information for cloning the genes controlling important traits in melon.展开更多
P450(cytochrome P450)is a supergene family,which is involved in various metabolic pathways in plants.Based on previous study,we found some of cucumber P450 mRNAs were systemic mobile in cucumber/pumpkin grafts.However...P450(cytochrome P450)is a supergene family,which is involved in various metabolic pathways in plants.Based on previous study,we found some of cucumber P450 mRNAs were systemic mobile in cucumber/pumpkin grafts.However,the reason that why P450 mRNAs were endorsed as signaling,and what specific motif(s)did they harbored is not clear yet.Here,we first identified 221 CsaP450 genes in cucumber genomewide level.Combining with graft-transmissiblemRNAs datasets in cucumber,we elucidated 15mobile-CsaP450-coding genes,of which 5 and 10 belonged to A-type and non-A type respectively.Compared with Arabidopsis and pumpkin(Cucubit moschata)graft-induced-transmissible P450 mRNAs,a phylogenetic treewas constructed and divided into eight clans by usingmultiple-sequence alignment.Gene ontology(GO)enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG)annotations indicated that the expression patterns of the mobile-mRNA-coding CsaP450 genes in different tissues of cucumber was specifically enriched in oxidoreductase activity and secondary metabolic pathways.The structures and motifs of these 15 mobile-mRNA-coding CsaP450 genes and their types of regulatory elements told that the proportion of CU-rich motifs was higher than nonmobile-mRNA-coding CsaP450 genes.The integrated analysis of mobility direction and mRNA abundance of 15 mobilemRNA-coding CsaP450 genes allowed to conclude that there was rarely relationship between them.The study provided a new insight into the relationship between the motifs and functional characterization of mobile-mRNA-coding P450 genes of cucumber in genome-wide levels.展开更多
There is no doubt that rare earth elements stand an important position among the essential elements of plant growth and it is long time since they are first used as plant growth promoters. Given their effects on micro...There is no doubt that rare earth elements stand an important position among the essential elements of plant growth and it is long time since they are first used as plant growth promoters. Given their effects on microstructure, most reports are focused on the toxicology rather than promotion. Using cucumis sativus L. (Jin Chun No.5) as experiment material, we try to find out the nutritional effects of low Y3+ concentrations on cucumber seedlings′ leaves. The present paper suggests that the rare earth elements act as micronutrients at low concentrations while they give rise to toxicity at high concentration. Benefits defeat toxicity with concentration ranging from 5 to 25 μmol·L-1. Through careful study, at the Y(NO3)3 concentration of 10 μmol·L-1 the content of chlorophyll as well as the activities of SOD, Cu-Zn SOD and the POD are the highest. It indicates 10 μmol·L-1 is the optimum concentration of yttrium for promoting the cucumber growth.展开更多
An interspecific hybrid F1 of Cucumis hystrix Chakr. x Cucumis sativus L. (NC4406) was used to establish the developmental sequence and to characterize the male and female gametophytes at cytological level for furth...An interspecific hybrid F1 of Cucumis hystrix Chakr. x Cucumis sativus L. (NC4406) was used to establish the developmental sequence and to characterize the male and female gametophytes at cytological level for further understanding of the phylogenic relationship and the mechanism of fertility or sterility in the interspecific hybrid F1 The development of male and female gametophytes was studied through meiotic analysis and paraffin section observation technique, respectively. Meanwhile, the fertility level was assessed through hybrid F1 backcrossing to cultivated cucumber 4406. Variable chromosome configurations were observed in the pollen mother cells (PMCs) of hybrid F1 at metaphase Ⅰ , e.g., univalents, bivalents, trivalents, quadravalents, etc. At anaphase Ⅰ and Ⅱ, chromosome lagging and bridges were frequently observed as well, which led to the formation of polyads and only a partial number of microspores could develop into fertile pollen grains (about 23.3%). Observations of the paraffin sections showed numerous degenerated and abnormal embryo sacs during the development of female gametophytes, and only 40% of the female gametophytes could develop into normal eight-nuclear megaspore. On an average, 22.8 and 6.3 seeds per fruit could be obtained from the reciprocal backcross. The interspecific hybrid F1 of C. hystrix x NC4406 was partially fertile; however, the meiotic behaviors of hybrid F1 showed a high level of intergenomic recombination between C. hystrix and C. sativus chromosomes, which indicated that it plays an important role for introgression of useful traits from C. hystrix into C. sativus.展开更多
Lipoxygenases are nonheme-iron-containing dioxygenases that catalyze the hydroperoxidation of unsatrated fatty acids containing a cis, cis-1,4-pentadiene structure producing hydroperoxy acids with conjugated dienes.
基金Supported by Special Basic Research Fund for Central Public Research Institutes(0032011018)~~
文摘To understand the inter-hybridization between Cucumis ssp.plants,we used 150 melon varieties as female parents to cross with Cucumis metuliferus and Cucumis anguria.Only melon accessions V2 and V129 set fruits,but seeds from fruits V2(V129)×C.metuliferus were abortive.A few of seeds from the bottom of fruit V2(V129)×C.anguria were fertile.Sequence-related amplified polymorphism(SRAP)molecular markers were used to analyze the progenies of inter-specific hybridization between C.anguria and melon V129.One pair primer(E14/M2)was found effective in amplification on male parent characteristic bands from the hybrids,suggesting that some DNA exchange had happened between C.anguria and melon V129.This study provided data for analyzing the mechanism of inter-hybridization between Cucumis plants.
基金Supported by National Natural Science Foundation of China(30671419)~~
文摘[Objective] The study was carried out to research the adaptability of Cucumis hystrix Chakr.under aluminum salt stress.[Method] Using Cucumis hystrix Chakr.and three cultivated cucumbers as tested materials,the change of physiological indexes including POD activity,SOD activity,electrolyte leakage and the content of malondialdehyde(MDA),proline(Pro)content and soluble sugar were studied.[Result] The POD activity,SOD activity,proline content and soluble sugar content of Cucumis hystrix were higher than these of cultivated cucumbers,while electrolyte leakage and MDA content were lower,and it showed that Cucumis hystrix had better adaptability under aluminum salt stress.[Conclusion] Our study could lay a foundation for the improvement of cultivated cucumber by using the excellent characteristics of Cucumis hystrix.
文摘Spectrin-like protein has been found in a variety of plant cells. In this study, electron microscopic observation of immuno-gold labelled preparations from the leaf petiole of cucumber ( Cucumis sativus L.) shows that it also exists in the sieve element-companion cell (SE-CC) complex, being widely distributed in P-protein filaments and sieve element reticulum (SER), in the cytoplasm and mitochondrial membrane of companion cell (CC) and in the branched plasmodesmata between sieve element (SE) and CC as well. The results suggest that this protein could be synthesized in CC and transferred to SE through plasmodesmata. Western blotting showed that spectrin-like protein existed in the protein of phloem exudate of cucumber, and its molecular weight was about 260 kD.
基金financially supported by grants from the Biogreen 21 Program, RDA, Korea (PJ00810304)the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences (2014–2015)the Beijing Municipal Education Commission, China (KM200910011001)
文摘Genetic transformation is an important technique for functional genomics study and genetic improvement of plants. Until now, Agrobacterium-mediated transformation methods using cotyledon as explants has been the major approach for cucumber, and its frequency has been up to 23%. For example, significantly enhancement of the transformation efficiency of this plant species was achieved from the cotyledon explants of the cultivar Poinsett 76 infected by Agrobacterium strains EHA105 with efficient positive selection system in lots of experiments. This review is to summarize some key factors influencing cucumber regeneration and genetic transformation, including target genes, selection systems and the ways of transgene introduction, and then to put forward some strategies for the increasing of cucumber transformation efficiency. In the future, it is high possible for cucumber to be potential bioreactor to produce vaccine and biomaterials for human beings.
文摘Cucumber powdery mildew is one of the most destructive diseases of cucumber throughout the world. In the present study, inheritance of powdery mildew resistance in three crosses, and linkage of resistance with amplified fragment length polymorphism (AFLP) markers are studied to formulate efficient strategies for breeding cultivars resistant to powdery mildew. The joint analysis of multiple generations and AFLP technique has been applied in this study. The best model is the one with two major genes, additive, dominant, and epistatic effects, plus polygenes with additive, dominant, and epistatic effects (E-l-0 model). The heritabilities of the major genes varied from 64.26% to 97.82%, and susceptibility was incompletely dominant for the two major genes in the three crosses studied. The additive effects of the two major genes and the dominant effect of the second major gene were high, and the epistatic effect of the additive-dominant between the two major genes was the highest in cross I . In cross II, the absolute value of the additive effect, dominant effect, and potential ratio of the first major gene were far higher than those of the second major gene, and the epistatic effect of the additive-additive was the highest. The genetic parameters of the two major genes in cross III were similar to those in cross II. Correlation and regression analyses showed that marker E25/M63-103 was linked to a susceptible gene controlling powdery mildew resistance. The marker could account for 19.98% of the phenotypic variation. When the marker was tested on a diverse set of 29 cucumber lines, the correlation between phenotype and genotype was not significant, which suggested cultivar specialty of gene expression or different methods of resistance to powdery mildew. The target DNA fragment was 103 bp in length, and only a small part was found to be homologous to DNA in the other species evaluated, which indicated that it was unique to the cucumber genome.
基金supported by Agriculture and Food Research Initiative Competitive Grant 2013-67013-21105 from the U.S. Department of Agriculture National Institute of Food to YWthe National Natural Science Foundation of China to YH (No. 31271350)
文摘Interspecific hybridization and allopolyploidization contribute to the improvement of many important crops. Recently, we successfully developed an amphidiploid from an interspecific cross between cucumber(Cucumis sativus, 2n = 2x = 14) and its relative C. hystrix(2n = 2x = 24) followed by chemical induction of chromosome doubling. The resulting allotetraploid plant was self-pollinated for three generations. The fertility and seed set of the amphidiploid plants were very low. In this study, we investigated the meiotic chromosome behavior in pollen mother cells with the aid of fluorescence in situ hybridization, aiming to identify the reasons for the low fertility and seed set in the amphidiploid plants. Homologous chromosome pairing appeared normal, but chromosome laggards were common, owing primarily to asynchronous meiosis of chromosomes from the two donor genomes. We suggest that asynchronous meiotic rhythm between the two parental genomes is the main reason for the low fertility and low seed set of the C. hystrix–cucumber amphidiploid plants.
基金This research was partially supported by the Trans-century Training Program Foundation for the Talents by the State Education Commission of China to Dr.Chen Jinfeng,by the National Natural Science Founda-tion of China(301 70644 and 30470120)by National Hi-Tech R&D Program(2002AA241251 and 2004 AA241120)by Tang's Cornell-China Scholar Program and by Pickle Seed Research Foundation of PPI.
文摘Studies on the reproduction and cytogenetic characterization of a primary amphidiploid Cucumis species C. hytivus Chen and Kirkbride (2n = 4x = 38) indicated that a more comprehensive cytogenetic analysis of this species and its first selfed progeny would increase its potential utility in cucumber improvement. With tendrils used as source materials for mitotic analysis, chromosome numbers in all selfed progenies were 2n = 38, confirming chromosomal stability in this synthetic amphidiploid species. Detailed meiotic processes were described by comparing the primary and the selfed amphidiploids. Meiotic abnormalities, such as chromosome lagging, unequal separation, chromosome multi-polarization and polyads were observed frequently in all amphidiploid plants except for the selfed no.8, in which meiosis was arrested prior to metaphase Ⅰ. Generally, the frequency of multivalents was higher and the configurations were more complex in the selfed progenies, demonstrating a more extensive genetic exchange between cucumber and C. hystrix Chakr. Genome separation between cucumber and C. hystrix was observed through prophase Ⅰ to anaphase Ⅰ in both generations of the amphidiploids. Consequently, in addition to n = 19, a new gamete with n = 7 was produced, which was confirmed by the chromosome counts 2n = 14 in the backcrossing progenies from cucumber × amphidiploid mating. Fertility varied among the selfed amphidiploid plants. The selfed plant no.1 was found to have an improved fertility (e.g., pollen staining ability 40.8% and 25.6 seeds per fruit) and then was used as source germplasm in further introgression and gene exchange experiments.
基金funded by a fellowship from the China Scholarship Council(Grant No.201908140029)。
文摘Melon(Cucumis melo L.)production is often restricted by a plethora of pests and diseases,including powdery mildew and downy mildew caused respectively by the fungal species Podosphaera xanthii/Golovinomyces orontii and oomycete species Pseudoperonospora cubensis.Many efforts have been directed on identification of resistant sources by screening(wild)melon germplasm.In the current review,we summarized such efforts from various publications of the last 50 plus years.Resistance to powdery mildew has been identified in 239 melon accessions and downy mildew resistance in 452 accessions of both C.melo and the wild relative species C.figarei.Among the resistance sources,C.melo var.cantalupensis accessions PMR 45,PMR 5,PMR 6,and WMR 29 as well as C.melo var.momordica accessions PI 124111,PI 124112,and PI 414723 have been considered as the most valuable germplasm because multiple resistance genes have been identified from these accessions and are widely used in melon resistance breeding.Further genetic mapping in a number of resistant sources has enabled identification of 25 dominant genes,two recessive genes and seven QTLs conferring powdery mildew resistance,as well as eight dominant genes and 11 QTLs for downy mildew resistances.Based on the reported sequences of associated markers,we anchored physically(many of)these genes and QTLs to chromosomes of the melon cv.DHL92 genome.In addition to presenting a comprehensive overview on powdery mildew and downy mildew resistance in(wild)melon germplasm,we suggest strategies aiming at breeding melon with durable and broad-spectrum resistance to pathogens and pests.
基金This work was supported by the Key R&D Project of Hubei Province(2021BBA101)the Fundamental Research Funds for the Central Universities(2662020YLPY024)+2 种基金the Key R&D Project of Xinjiang Academy of Agricultural Sciences(xjkcpy-2022006)the Tianshan Innovation Team(2022D14015)the China Agriculture Research System(CARS-25).
文摘Melon is an important horticultural crop with extensive diversity in many horticultural groups.To explore its genomic diversity,it is necessary to assemble more high-quality complete genomes from different melon accessions.Meanwhile,a large number of QTLs have been mapped in several studies.Integration of the published QTLs onto a complete genome can provide more accurate information for candidate gene cloning.To address these problems,a telomere-to-telomere(T2T)genome of the elite melon landrace Kuizilikjiz(Cucumis melo L.var.inodorus)was de novo assembled and all the published QTLs were projected onto it in this study.The results showed that a high-quality Kuizilikjiz genome with the size of 379.2 Mb and N50 of 31.7 Mb was de novo assembled using the combination of short reads,PacBio high-fidelity long reads,Hi-C data,and a high-density genetic map.Each chromosome contained the centromere and telomeres at both ends.A large number of structural variations were observed between Kuizilikjiz and the other published genomes.A total of 1294 QTLs published in 67 studies were collected and projected onto the T2T genome.Several clustered,co-localized,and overlapped QTLs were determined.Furthermore,20 stable meta-QTLs were identified,which significantly reduced the mapping intervals of the initial QTLs and greatly facilitated identification of the candidate genes.Collectively,the T2T genome assembly together with the numerous projected QTLs will not only broaden the high-quality genome resources but also provide valuable and abundant QTL information for cloning the genes controlling important traits in melon.
基金supported by National Key Research and Development Program of China(Grant Nos.2018YFD1000800 and 2019YFD1000300)National Natural Science Foundation of China(Grant No.31872158)Earmarked Fund for China Agriculture Research System(Grant No.CAS-23).
文摘P450(cytochrome P450)is a supergene family,which is involved in various metabolic pathways in plants.Based on previous study,we found some of cucumber P450 mRNAs were systemic mobile in cucumber/pumpkin grafts.However,the reason that why P450 mRNAs were endorsed as signaling,and what specific motif(s)did they harbored is not clear yet.Here,we first identified 221 CsaP450 genes in cucumber genomewide level.Combining with graft-transmissiblemRNAs datasets in cucumber,we elucidated 15mobile-CsaP450-coding genes,of which 5 and 10 belonged to A-type and non-A type respectively.Compared with Arabidopsis and pumpkin(Cucubit moschata)graft-induced-transmissible P450 mRNAs,a phylogenetic treewas constructed and divided into eight clans by usingmultiple-sequence alignment.Gene ontology(GO)enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG)annotations indicated that the expression patterns of the mobile-mRNA-coding CsaP450 genes in different tissues of cucumber was specifically enriched in oxidoreductase activity and secondary metabolic pathways.The structures and motifs of these 15 mobile-mRNA-coding CsaP450 genes and their types of regulatory elements told that the proportion of CU-rich motifs was higher than nonmobile-mRNA-coding CsaP450 genes.The integrated analysis of mobility direction and mRNA abundance of 15 mobilemRNA-coding CsaP450 genes allowed to conclude that there was rarely relationship between them.The study provided a new insight into the relationship between the motifs and functional characterization of mobile-mRNA-coding P450 genes of cucumber in genome-wide levels.
基金Project supported by Scientific Grant of TianJin Normal University (1CHS02B)Special Grant of the President of TianJin Normal University
文摘There is no doubt that rare earth elements stand an important position among the essential elements of plant growth and it is long time since they are first used as plant growth promoters. Given their effects on microstructure, most reports are focused on the toxicology rather than promotion. Using cucumis sativus L. (Jin Chun No.5) as experiment material, we try to find out the nutritional effects of low Y3+ concentrations on cucumber seedlings′ leaves. The present paper suggests that the rare earth elements act as micronutrients at low concentrations while they give rise to toxicity at high concentration. Benefits defeat toxicity with concentration ranging from 5 to 25 μmol·L-1. Through careful study, at the Y(NO3)3 concentration of 10 μmol·L-1 the content of chlorophyll as well as the activities of SOD, Cu-Zn SOD and the POD are the highest. It indicates 10 μmol·L-1 is the optimum concentration of yttrium for promoting the cucumber growth.
基金This paper is translated from its Chinese version in Scientia Agricultura Sinica.This research was partially supported by the Transcentury Training Program Foundation for the Talents by the Ministry of Education of China to Dr.Chen Jinfeng(30470120)by the National Natural Science Foundation of China(30671419)+2 种基金the National Hi-Tech R&D Program(2004AA241120)the Tang Foundation Cornell-China Scholar Programthe Pickle Seed Research Foundation of Pickle Packers International.The authors sincerely thank Dr.Zhai Huqu,the President of the Chinese Academy of Agricultural Sciences for his support in this research.
文摘An interspecific hybrid F1 of Cucumis hystrix Chakr. x Cucumis sativus L. (NC4406) was used to establish the developmental sequence and to characterize the male and female gametophytes at cytological level for further understanding of the phylogenic relationship and the mechanism of fertility or sterility in the interspecific hybrid F1 The development of male and female gametophytes was studied through meiotic analysis and paraffin section observation technique, respectively. Meanwhile, the fertility level was assessed through hybrid F1 backcrossing to cultivated cucumber 4406. Variable chromosome configurations were observed in the pollen mother cells (PMCs) of hybrid F1 at metaphase Ⅰ , e.g., univalents, bivalents, trivalents, quadravalents, etc. At anaphase Ⅰ and Ⅱ, chromosome lagging and bridges were frequently observed as well, which led to the formation of polyads and only a partial number of microspores could develop into fertile pollen grains (about 23.3%). Observations of the paraffin sections showed numerous degenerated and abnormal embryo sacs during the development of female gametophytes, and only 40% of the female gametophytes could develop into normal eight-nuclear megaspore. On an average, 22.8 and 6.3 seeds per fruit could be obtained from the reciprocal backcross. The interspecific hybrid F1 of C. hystrix x NC4406 was partially fertile; however, the meiotic behaviors of hybrid F1 showed a high level of intergenomic recombination between C. hystrix and C. sativus chromosomes, which indicated that it plays an important role for introgression of useful traits from C. hystrix into C. sativus.
文摘Lipoxygenases are nonheme-iron-containing dioxygenases that catalyze the hydroperoxidation of unsatrated fatty acids containing a cis, cis-1,4-pentadiene structure producing hydroperoxy acids with conjugated dienes.