Stigma color plays an important role in pollination.In nature,melon(Cucumis melo L.)stigmas are either yellow or green;however,a review of the literature found no report on how stigma color affects pollination and fru...Stigma color plays an important role in pollination.In nature,melon(Cucumis melo L.)stigmas are either yellow or green;however,a review of the literature found no report on how stigma color affects pollination and fruit development in melon.Here,we used an F_(2)melon population derived from a cross between‘MR-1’(P_(1),with green stigmas)and‘M1–32’(P_(2),with yellow stigmas),and performed genetic analysis and mapping.The results of bulked segregant analysis allowed the identification of genetic loci controlling stigma color on chromosomes 6 and 8.An F2 population consisting of 150 individuals was used for initial mapping.A genetic map of 304.17 cM was constructed using 37 cleaved amplified polymorphism sequence(CAPS)markers.We identified one major quantitative trait locus(QTL)and one minor QTL for stigma color.The major QTL GS8.1 was further mapped to a 4.13 cM interval between CAPS markers 8C-10 and 8C-16,which explained 27.04%of the phenotypic variation.In addition,GS6.1 was mapped between E-49 and 6A-7,explaining 18.6%of the phenotypic variation.This study provides a theoretical basis for the fine mapping and cloning of melon genes controlling stigma color.展开更多
Modeling of fruit morphological formation in melon is important for realizing virtual and digital plant growth.The objective of this study was to characterize the changes in patterns of fruit growth characters during ...Modeling of fruit morphological formation in melon is important for realizing virtual and digital plant growth.The objective of this study was to characterize the changes in patterns of fruit growth characters during plant development.In cultivar experiments,a high-resolution wireless vision sensor network has been developed to realize non-contact automatic uninterrupted measurement of the fruit shape micro-change (fruit size,color,and net).Results showed that the fruit swelling process (vertical and horizontal diameters) exhibited a slow-rapid-slow pattern,which could be well described with a logistic curve against growing degree days (GDD);fruit color changes based on the RGB values could be represented by quadratic relationship to cumulative GDD;the fruit net changes over growth progress could be partitioned into three phases according to the time interval.The first phase was from 1 to 30 days after pollination (DAP),in which the vertical stripe appeared at fruit middle part and the horizontal stripe at fruit petiole and hilum part as well;the second phase was from 30 to 40 DAP,the horizontal stripe occurred at fruit middle part and the net was formed;the third phase was the process started from 40 DAP,the netted breadth and thickness were gradually increased.The model was validated with the independent data from the experiment,and the mean RMSE (root mean square error) of fruit were 0.36 and 0.28 cm for vertical and horizontal diameters,11.9 for fruit color,and 0.45 cm for stripe length and diameter at varied GDD,respectively.This work is beneficial to a reliable foundation for study the relationship between morphological formation and physiological change of the melon fruit internally and then realize the intelligent precision management to improve the yield and quality of greenhouse melon production.展开更多
Objective:Wild musk melon(Cucumis melo var.agrestis,CMA)is one of the edible plants form Tamil Nadu.Traditionally,this plant was used as diabetic diet(leaves of CMA with Momordica charantia leaves),but there is no sci...Objective:Wild musk melon(Cucumis melo var.agrestis,CMA)is one of the edible plants form Tamil Nadu.Traditionally,this plant was used as diabetic diet(leaves of CMA with Momordica charantia leaves),but there is no scientific report on antidiabetic action of this plant material.Hence,the current research work was designed to evaluate the antihyperglycemic and antihyperlipidemic effect of hydroalcoholic extract of CMA leaves(HALEC)in streptozotocin(STZ)-nicotinamide(NIC)-induced diabetic rats.Methods:Diabetes was induced by administration of STZ(60 mg/kg,i.p.)after 15 min of NIC(120 mg/kg i.p.)administration.The diabetic rats were treated with HALEC(300 and 600 mg/kg,p.o.,respectively)for 21 d.Results:After the management with HALEC,blood glucose,HbA1c levels,total cholesterol,LDL cholesterol,triglycerides levels,glycogen phosphorylase and glucose-6-phosphatase levels were significantly diminished in diabetic rats.However,haemoglobin level,HDL cholesterol,liver glycogen,total protein,hexokinase,glucose-6-phosphate dehydrogenase levels were significantly increased in HALEC treated diabetic rats.The histopathological studies of the pancreas in HALEC-treated diabetic rats showed almost normal appearance.L6 cell line study revealed the increased glucose uptake activity of HALEC.High performance thin layer chromatography(HPTLC)analysis confirms the presence of active principles such as rutin,gallic acid and quercetin in HALEC.Conclusion:The results indicated that HALEC possess significant antihyperglycemic and antihyperlipidemic activity in STZ-NIC-induced typeⅡdiabetic rats with protective effect.This research work will be useful for the isolation of active principles and development of herbal formulation in phytopharmaceuticals.展开更多
Resistance of the melon line TGR-1551 to the aphid Aphis gossypii is based on preventing aphids from ingesting phloem sap. In electrical penetration graphs (EPGs), this resistance has been characterized with A. goss...Resistance of the melon line TGR-1551 to the aphid Aphis gossypii is based on preventing aphids from ingesting phloem sap. In electrical penetration graphs (EPGs), this resistance has been characterized with A. gossypii showing unusually long phloem salivation periods (waveform El) mostly followed by pathway activities (waveform C) or if followed by phloem ingestion (waveform E2), ingestion was not sustained for more than 10 min. Stylectomy with aphids on susceptible and resistant plants was performed during EPG recording while the stylet tips were phloem inserted. This was followed by dissection of the penetrated leaf section, plant tissue fixation, resin embedding, and ultrathin sectioning for transmission electron microscopic observation in order to study the resistance mechanism in the TGR. The most obvious aspect appeared to be the coagulation of phloem proteins inside the stylet canals and the punctured sieve elements. Stylets of 5 aphids per genotype were amputated during sieve element (SE) salivation (El) and SE ingestion (E2). Cross-sections of stylet bundles in susceptible melon plants showed that the contents of the stylet canals were totally clear and also, no coagulated phloem proteins occurred in their punctured sieve elements. In contrast, electron-dense coagulations were found in both locations in the resistant plants. Due to calcium binding, aphid saliva has been hypothesized to play an essential role in preventing/suppressing such coagulations that cause occlusion of sieves plate and in the food canal of the aphid's stylets. Doubts about this role of E 1 salivation are discussed on the basis of our results.展开更多
基金This research was funded by the National Nature Science Foundation of China(Grant No.31772331)the China Agriculture Research System(Grant No.CARS-25).
文摘Stigma color plays an important role in pollination.In nature,melon(Cucumis melo L.)stigmas are either yellow or green;however,a review of the literature found no report on how stigma color affects pollination and fruit development in melon.Here,we used an F_(2)melon population derived from a cross between‘MR-1’(P_(1),with green stigmas)and‘M1–32’(P_(2),with yellow stigmas),and performed genetic analysis and mapping.The results of bulked segregant analysis allowed the identification of genetic loci controlling stigma color on chromosomes 6 and 8.An F2 population consisting of 150 individuals was used for initial mapping.A genetic map of 304.17 cM was constructed using 37 cleaved amplified polymorphism sequence(CAPS)markers.We identified one major quantitative trait locus(QTL)and one minor QTL for stigma color.The major QTL GS8.1 was further mapped to a 4.13 cM interval between CAPS markers 8C-10 and 8C-16,which explained 27.04%of the phenotypic variation.In addition,GS6.1 was mapped between E-49 and 6A-7,explaining 18.6%of the phenotypic variation.This study provides a theoretical basis for the fine mapping and cloning of melon genes controlling stigma color.
基金funded by the National Natural Science Foundation of China (31000669)the Shanghai Leading Academic Discipline Project,China (B209)
文摘Modeling of fruit morphological formation in melon is important for realizing virtual and digital plant growth.The objective of this study was to characterize the changes in patterns of fruit growth characters during plant development.In cultivar experiments,a high-resolution wireless vision sensor network has been developed to realize non-contact automatic uninterrupted measurement of the fruit shape micro-change (fruit size,color,and net).Results showed that the fruit swelling process (vertical and horizontal diameters) exhibited a slow-rapid-slow pattern,which could be well described with a logistic curve against growing degree days (GDD);fruit color changes based on the RGB values could be represented by quadratic relationship to cumulative GDD;the fruit net changes over growth progress could be partitioned into three phases according to the time interval.The first phase was from 1 to 30 days after pollination (DAP),in which the vertical stripe appeared at fruit middle part and the horizontal stripe at fruit petiole and hilum part as well;the second phase was from 30 to 40 DAP,the horizontal stripe occurred at fruit middle part and the net was formed;the third phase was the process started from 40 DAP,the netted breadth and thickness were gradually increased.The model was validated with the independent data from the experiment,and the mean RMSE (root mean square error) of fruit were 0.36 and 0.28 cm for vertical and horizontal diameters,11.9 for fruit color,and 0.45 cm for stripe length and diameter at varied GDD,respectively.This work is beneficial to a reliable foundation for study the relationship between morphological formation and physiological change of the melon fruit internally and then realize the intelligent precision management to improve the yield and quality of greenhouse melon production.
文摘Objective:Wild musk melon(Cucumis melo var.agrestis,CMA)is one of the edible plants form Tamil Nadu.Traditionally,this plant was used as diabetic diet(leaves of CMA with Momordica charantia leaves),but there is no scientific report on antidiabetic action of this plant material.Hence,the current research work was designed to evaluate the antihyperglycemic and antihyperlipidemic effect of hydroalcoholic extract of CMA leaves(HALEC)in streptozotocin(STZ)-nicotinamide(NIC)-induced diabetic rats.Methods:Diabetes was induced by administration of STZ(60 mg/kg,i.p.)after 15 min of NIC(120 mg/kg i.p.)administration.The diabetic rats were treated with HALEC(300 and 600 mg/kg,p.o.,respectively)for 21 d.Results:After the management with HALEC,blood glucose,HbA1c levels,total cholesterol,LDL cholesterol,triglycerides levels,glycogen phosphorylase and glucose-6-phosphatase levels were significantly diminished in diabetic rats.However,haemoglobin level,HDL cholesterol,liver glycogen,total protein,hexokinase,glucose-6-phosphate dehydrogenase levels were significantly increased in HALEC treated diabetic rats.The histopathological studies of the pancreas in HALEC-treated diabetic rats showed almost normal appearance.L6 cell line study revealed the increased glucose uptake activity of HALEC.High performance thin layer chromatography(HPTLC)analysis confirms the presence of active principles such as rutin,gallic acid and quercetin in HALEC.Conclusion:The results indicated that HALEC possess significant antihyperglycemic and antihyperlipidemic activity in STZ-NIC-induced typeⅡdiabetic rats with protective effect.This research work will be useful for the isolation of active principles and development of herbal formulation in phytopharmaceuticals.
文摘Resistance of the melon line TGR-1551 to the aphid Aphis gossypii is based on preventing aphids from ingesting phloem sap. In electrical penetration graphs (EPGs), this resistance has been characterized with A. gossypii showing unusually long phloem salivation periods (waveform El) mostly followed by pathway activities (waveform C) or if followed by phloem ingestion (waveform E2), ingestion was not sustained for more than 10 min. Stylectomy with aphids on susceptible and resistant plants was performed during EPG recording while the stylet tips were phloem inserted. This was followed by dissection of the penetrated leaf section, plant tissue fixation, resin embedding, and ultrathin sectioning for transmission electron microscopic observation in order to study the resistance mechanism in the TGR. The most obvious aspect appeared to be the coagulation of phloem proteins inside the stylet canals and the punctured sieve elements. Stylets of 5 aphids per genotype were amputated during sieve element (SE) salivation (El) and SE ingestion (E2). Cross-sections of stylet bundles in susceptible melon plants showed that the contents of the stylet canals were totally clear and also, no coagulated phloem proteins occurred in their punctured sieve elements. In contrast, electron-dense coagulations were found in both locations in the resistant plants. Due to calcium binding, aphid saliva has been hypothesized to play an essential role in preventing/suppressing such coagulations that cause occlusion of sieves plate and in the food canal of the aphid's stylets. Doubts about this role of E 1 salivation are discussed on the basis of our results.