In this paper, the dynamic properties of a discrete predator-prey model are discussed. The properties of non-hyperbolic fixed points and hyperbolic fixed points of the model are analyzed. First, by using the classic S...In this paper, the dynamic properties of a discrete predator-prey model are discussed. The properties of non-hyperbolic fixed points and hyperbolic fixed points of the model are analyzed. First, by using the classic Shengjin formula, we find the existence conditions for fixed points of the model. Then, by using the qualitative theory of ordinary differential equations and matrix theory we indicate which points are hyperbolic and which are non-hyperbolic and the associated conditions.展开更多
Subject to the homogeneous Neumann boundary condition, a ratio-dependent predator-prey reaction diffusion model is discussed. An improved result for the model is derived, that is, the unique positive constant steady s...Subject to the homogeneous Neumann boundary condition, a ratio-dependent predator-prey reaction diffusion model is discussed. An improved result for the model is derived, that is, the unique positive constant steady state is the global stability. This is done using the comparison principle and establishing iteration schemes involving positive solutions supremum and infimum. The result indicates that the two species will ultimately distribute homogeneously in space. In fact, the comparison argument and iteration technique to be used in this paper can be applied to some other models. This method deals with the not-existence of a non-constant positive steady state for some reaction diffusion systems, which is rather simple but sufficiently effective.展开更多
This article is focusing on a class of multi-delay predator-prey model with feedback controls and prey diffusion. By developing some new analysis methods and using the theory of differential inequalities as well as co...This article is focusing on a class of multi-delay predator-prey model with feedback controls and prey diffusion. By developing some new analysis methods and using the theory of differential inequalities as well as constructing a suitable Lyapunov function, we establish a set of easily verifiable sufficient conditions which guarantee the permanence of the system and the globally attractivity of positive solution for the predator-prey system.Furthermore, some conditions for the existence, uniqueness and stability of positive periodic solution for the corresponding periodic system are obtained by using the fixed point theory and some new analysis techniques. In additional, some numerical solutions of the equations describing the system are given to verify the obtained criteria are new, general, and easily verifiable. Finally, we still solve numerically the corresponding stochastic predator-prey models with multiplicative noise sources, and obtain some new interesting dynamical behaviors of the system.展开更多
In this paper,a discrete Lotka-Volterra predator-prey model is proposed that considers mixed functional responses of Holling types I and III.The equilibrium points of the model are obtained,and their stability is test...In this paper,a discrete Lotka-Volterra predator-prey model is proposed that considers mixed functional responses of Holling types I and III.The equilibrium points of the model are obtained,and their stability is tested.The dynamical behavior of this model is studied according to the change of the control parameters.We find that the complex dynamical behavior extends from a stable state to chaotic attractors.Finally,the analytical results are clarified by some numerical simulations.展开更多
In this paper, the temporal and spatial patterns of a diffusive predator-prey model with mutual interference under homogeneous Neumann boundary conditions were studied. Specifically, first, taking the intrinsic growth...In this paper, the temporal and spatial patterns of a diffusive predator-prey model with mutual interference under homogeneous Neumann boundary conditions were studied. Specifically, first, taking the intrinsic growth rate of the predator as the parameter, we give a computational and theoretical analysis of Hopf bifurcation on the positive equilibrium for the ODE system. As well, we have discussed the conditions for determining the bifurcation direction and the stability of the bifurcating periodic solutions.展开更多
This paper deals with a Lotka-Volterra predator-prey model with a crowding term in the predator equation.We obtain a critical value λ1^D(Ω0),and demonstrate that the existence of the predator inΩ0 only depends on t...This paper deals with a Lotka-Volterra predator-prey model with a crowding term in the predator equation.We obtain a critical value λ1^D(Ω0),and demonstrate that the existence of the predator inΩ0 only depends on the relationship of the growth rateμof the predator and λ1^D(Ω0),not on the prey.Furthermore,whenμ<λ1^D(Ω0),we obtain the existence and uniqueness of its positive steady state solution,while whenμ≥λ1^D(Ω0),the predator and the prey cannot coexist inΩ0.Our results show that the coexistence of the prey and the predator is sensitive to the size of the crowding regionΩ0,which is different from that of the classical Lotka-Volterra predator-prey model.展开更多
We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence de...We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least four positive periodic solutions of this model.展开更多
A Holling type III predator-prey model with stage structure for prey is investi-gated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the system is discu...A Holling type III predator-prey model with stage structure for prey is investi-gated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the system is discussed. By using the uniformly persistence theory, the system is proven to be permanent if the coexistence equilibrium exists. By using Lyapunov functionals and LaSalle’s invariance principle, it is shown that the two boundary equilibria is globally asymptotically stable when the coexistence equilibrium is not feasible. By using compound matrix theory, the sucient conditions are obtained for the global stability of the coexistence equilibrium. At last, numerical simulations are carried out to illustrate the main results.展开更多
A delayed predator-prey Gompertz model is investigated. The stability is analyzed. Anti-control of Hopf bifurcation for the model is presented. Numerical simulations are performed to confirm that the new feedback cont...A delayed predator-prey Gompertz model is investigated. The stability is analyzed. Anti-control of Hopf bifurcation for the model is presented. Numerical simulations are performed to confirm that the new feedback controller using time delay is efficient in creating Hopf bifurcation. Finally, main conclusions are included.展开更多
In this paper, a stochastic predator-prey model with stage structure for predatorand ratio-dependent functional response is concerned. Sufficient conditions for the globalasymptotic stability of positive equilibrium a...In this paper, a stochastic predator-prey model with stage structure for predatorand ratio-dependent functional response is concerned. Sufficient conditions for the globalasymptotic stability of positive equilibrium are established. Some numerical simulations arecarried out to illustrate the theoretical results.展开更多
This paper presents a theoretical analysis of evolutionary process that involves organisms distribution and their interaction of spatially distributed population with diffusion in a Holling-III ratio-dependent predato...This paper presents a theoretical analysis of evolutionary process that involves organisms distribution and their interaction of spatially distributed population with diffusion in a Holling-III ratio-dependent predator-prey model, the sufficient conditions for diffusion-driven instability with Neumann boundary conditions are obtained. Furthermore, it presents novel numerical evidence of time evolution of patterns controlled by diffusion in the model, and finds that the model dynamics exhibits complex pattern replication, and the pattern formation depends on the choice of the initial conditions. The ideas in this paper may provide a better understanding of the pattern formation in ecosystems.展开更多
In this paper, we consider a predator-prey model. A sufficient conditionis presented for the stability of the equilibrium, which is different from the one for themodel with Hassell-Varley type functional response. Fur...In this paper, we consider a predator-prey model. A sufficient conditionis presented for the stability of the equilibrium, which is different from the one for themodel with Hassell-Varley type functional response. Furthermore, by constructing aLyapunov function, we prove that the positive equilibrium is asymptotically stable.展开更多
Prominent examples of predator-prey oscillations between prey-specific predators exist, but long-term data sets showing these oscillations are uncommon. We explored various models to describe the oscillating behavior ...Prominent examples of predator-prey oscillations between prey-specific predators exist, but long-term data sets showing these oscillations are uncommon. We explored various models to describe the oscillating behavior of coyote (Canis latrans) and black-tailed jackrabbits (Lepus californicus) abundances in a sagebrush-steppe community in Curlew Valley, UT over a 31-year period between 1962 and 1993. We tested both continuous and discrete models which accounted for a variety of mechanisms to discriminate the most important factors affecting the time series. Both species displayed cycles in abundance with three distinct peaks at ten-year intervals. The coupled oscillations appear greater in the mid-seventies and a permanent increase in the coyote density seems apparent. Several factors could have influenced this predator-prey system including seasonality, predator satiation, density dependence, social structure among coyotes, and a change in the coyote bounty that took place during the course of data collection. Maximum likelihood estimation was used to obtain parameter values for the models, and Akaike Information Criterion (AIC) values were used to compare models. Coyote social structure and limiting resources in the form of density-dependence and satiation seemed to be important factors affecting population dynamics.展开更多
The Lotka-Volterra predator-prey model is widely used in many disciplines such as ecology and economics. The model consists of a pair of first-order nonlinear differential equations. In this paper, we first analyze th...The Lotka-Volterra predator-prey model is widely used in many disciplines such as ecology and economics. The model consists of a pair of first-order nonlinear differential equations. In this paper, we first analyze the dynamics, equilibria and steady state oscillation contours of the differential equations and study in particular a well-known problem of a high risk that the prey and/or predator may end up with extinction. We then introduce exogenous control to reduce the risk of extinction. We propose two control schemes. The first scheme, referred as convergence guaranteed scheme, achieves very fine granular control of the prey and predator populations, in terms of the final state and convergence dynamics, at the cost of sophisticated implementation. The second scheme, referred as on-off scheme, is very easy to implement and drive the populations to steady state oscillation that is far from the risk of extinction. Finally we investigate the robustness of these two schemes against parameter mismatch and observe that the on-off scheme is much more robust. Hence, we conclude that while the convergence guaranteed scheme achieves theoretically optimal performance, the on-off scheme is more attractive for practical applications.展开更多
A predator-prey model with linear capture term Holling-II functional response was studied by using differential equation theory. The existence and the stabilities of non-negative equilibrium points of the model were d...A predator-prey model with linear capture term Holling-II functional response was studied by using differential equation theory. The existence and the stabilities of non-negative equilibrium points of the model were discussed. The results show that under certain limited conditions, these two groups can maintain a balanced position, which provides a theoretical reference for relevant departments to make decisions on ecological protection.展开更多
Mealybugs are a major pest for many crops (such as the vegetable Cassava, in Thailand). An environmentally-friendly bio-control method is implemented using an introduced predator (green lacewings) of the mealybugs...Mealybugs are a major pest for many crops (such as the vegetable Cassava, in Thailand). An environmentally-friendly bio-control method is implemented using an introduced predator (green lacewings) of the mealybugs to mitigate plant damage. This is analyzed so as to devise and determine an optimal strategy for control of the mealybug population. A predator-prey model has been proposed and analyzed to study the effect of the biological control of the spread of the mealybugs in the plant field. The behaviour of the system in terms of stability, phase space and bifurcation diagrams are considered. The results obtained from different numbers of predators being released are compared. In particular we obtain thresholds of introduced-predator level above which the prey is driven to extinction. Future models will include age-structured multi-compartments for both the prey and predator populations.展开更多
The canard explosion phenomenon in a predator-prey model with Michaelis-Menten functional response is analyzed in this paper by employing the geometric singular perturbation theory. First, some turning points, such as...The canard explosion phenomenon in a predator-prey model with Michaelis-Menten functional response is analyzed in this paper by employing the geometric singular perturbation theory. First, some turning points, such as, fold point, transcritical point, pitchfork point, canard point, are identified;then Hopf bifurcation, relaxation oscillation, together with the canard transition from Hopf bifurcation to relaxation oscillation are discussed.展开更多
The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution ar...The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.展开更多
In this paper, we investigate the solution moment stability for a Harrison-type predator-prey model with parametric dichotomous noises. Using the Shapiro-Loginov formula, the equations for the first-order and second-o...In this paper, we investigate the solution moment stability for a Harrison-type predator-prey model with parametric dichotomous noises. Using the Shapiro-Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses.展开更多
In this paper, we investigate the dynamics of a stochastic predator-prey model with ratio-dependent functional response and disease in the prey. Firstly, we prove the existence and uniqueness of the positive solution ...In this paper, we investigate the dynamics of a stochastic predator-prey model with ratio-dependent functional response and disease in the prey. Firstly, we prove the existence and uniqueness of the positive solution for the stochastic model by using conventional methods. Then we obtain the threshold <img alt="" src="Edit_0a62b9be-7934-457b-aca3-af3420f5b5ee.png" /> for the infected prey population, that is, the disease will tend to extinction if <img alt="" src="Edit_e6cd63f6-de07-42be-a22a-8750d6c8aac9.png" />< 1, and it will exist in the long time if <img alt="" src="Edit_5964fdd8-a9fe-4dc2-b897-f4206f046f65.png" />> 1. Finally, the sufficient condition on the existence of a unique ergodic stationary distribution is obtained, which indicates that all the populations are permanent in the time mean sense. Numerical simulations are conducted to verify our analysis results.展开更多
文摘In this paper, the dynamic properties of a discrete predator-prey model are discussed. The properties of non-hyperbolic fixed points and hyperbolic fixed points of the model are analyzed. First, by using the classic Shengjin formula, we find the existence conditions for fixed points of the model. Then, by using the qualitative theory of ordinary differential equations and matrix theory we indicate which points are hyperbolic and which are non-hyperbolic and the associated conditions.
文摘Subject to the homogeneous Neumann boundary condition, a ratio-dependent predator-prey reaction diffusion model is discussed. An improved result for the model is derived, that is, the unique positive constant steady state is the global stability. This is done using the comparison principle and establishing iteration schemes involving positive solutions supremum and infimum. The result indicates that the two species will ultimately distribute homogeneously in space. In fact, the comparison argument and iteration technique to be used in this paper can be applied to some other models. This method deals with the not-existence of a non-constant positive steady state for some reaction diffusion systems, which is rather simple but sufficiently effective.
基金supported by the Sichuan Science and Technology Program of China(2018JY0480)the Natural Science Foundation Project of CQ CSTC of China(cstc2015jcyjBX0135)the National Nature Science Fundation of China(61503053)
文摘This article is focusing on a class of multi-delay predator-prey model with feedback controls and prey diffusion. By developing some new analysis methods and using the theory of differential inequalities as well as constructing a suitable Lyapunov function, we establish a set of easily verifiable sufficient conditions which guarantee the permanence of the system and the globally attractivity of positive solution for the predator-prey system.Furthermore, some conditions for the existence, uniqueness and stability of positive periodic solution for the corresponding periodic system are obtained by using the fixed point theory and some new analysis techniques. In additional, some numerical solutions of the equations describing the system are given to verify the obtained criteria are new, general, and easily verifiable. Finally, we still solve numerically the corresponding stochastic predator-prey models with multiplicative noise sources, and obtain some new interesting dynamical behaviors of the system.
基金the Deanship of Scientific Research at King Khalid University for funding this work through the Big Research Group Project under grant number(R.G.P2/16/40).
文摘In this paper,a discrete Lotka-Volterra predator-prey model is proposed that considers mixed functional responses of Holling types I and III.The equilibrium points of the model are obtained,and their stability is tested.The dynamical behavior of this model is studied according to the change of the control parameters.We find that the complex dynamical behavior extends from a stable state to chaotic attractors.Finally,the analytical results are clarified by some numerical simulations.
文摘In this paper, the temporal and spatial patterns of a diffusive predator-prey model with mutual interference under homogeneous Neumann boundary conditions were studied. Specifically, first, taking the intrinsic growth rate of the predator as the parameter, we give a computational and theoretical analysis of Hopf bifurcation on the positive equilibrium for the ODE system. As well, we have discussed the conditions for determining the bifurcation direction and the stability of the bifurcating periodic solutions.
基金the Hunan Provincial Natural Science Foundation of China(2019JJ40079,2019JJ50160)the Scientific Research Fund of Hunan Provincial Education Department(16A071,19A179)the National Natural Science Foundation of China(11701169)。
文摘This paper deals with a Lotka-Volterra predator-prey model with a crowding term in the predator equation.We obtain a critical value λ1^D(Ω0),and demonstrate that the existence of the predator inΩ0 only depends on the relationship of the growth rateμof the predator and λ1^D(Ω0),not on the prey.Furthermore,whenμ<λ1^D(Ω0),we obtain the existence and uniqueness of its positive steady state solution,while whenμ≥λ1^D(Ω0),the predator and the prey cannot coexist inΩ0.Our results show that the coexistence of the prey and the predator is sensitive to the size of the crowding regionΩ0,which is different from that of the classical Lotka-Volterra predator-prey model.
基金Supported by the China Postdoctoral Science Foundation (20060400267)
文摘We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least four positive periodic solutions of this model.
基金Supported by the NSFC(11371368)Supported by the Basic Courses Department of OEC Foundation(Jcky1302)
文摘A Holling type III predator-prey model with stage structure for prey is investi-gated. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria of the system is discussed. By using the uniformly persistence theory, the system is proven to be permanent if the coexistence equilibrium exists. By using Lyapunov functionals and LaSalle’s invariance principle, it is shown that the two boundary equilibria is globally asymptotically stable when the coexistence equilibrium is not feasible. By using compound matrix theory, the sucient conditions are obtained for the global stability of the coexistence equilibrium. At last, numerical simulations are carried out to illustrate the main results.
基金Foundation item: Supported by the National Natural Science Foundation of China(l1261010) Supported by the Soft Science and Technology Program of Guizhou Province(2011LKC2030)+3 种基金 Suppored by the Natural Science and Technology Foundation of Guizhou Province(J[2012]2100) Suppored by the Governor Foundation of Guizhou Province([2012]53) Suppored by the Doctoral Foundation of Guizhou University of Finance and Economics(2010) Suppored by the Science and Technology Program of Hunan Province(2010FJ6021)
文摘A delayed predator-prey Gompertz model is investigated. The stability is analyzed. Anti-control of Hopf bifurcation for the model is presented. Numerical simulations are performed to confirm that the new feedback controller using time delay is efficient in creating Hopf bifurcation. Finally, main conclusions are included.
基金Supported by the National Natural Science Foundation of China(Nos.11371368)The Natural Science Foundation of HeBei(No.A2014506015)
文摘In this paper, a stochastic predator-prey model with stage structure for predatorand ratio-dependent functional response is concerned. Sufficient conditions for the globalasymptotic stability of positive equilibrium are established. Some numerical simulations arecarried out to illustrate the theoretical results.
基金supported by the Natural Science Foundation of Zhejiang Province of China (Grant No.Y7080041)
文摘This paper presents a theoretical analysis of evolutionary process that involves organisms distribution and their interaction of spatially distributed population with diffusion in a Holling-III ratio-dependent predator-prey model, the sufficient conditions for diffusion-driven instability with Neumann boundary conditions are obtained. Furthermore, it presents novel numerical evidence of time evolution of patterns controlled by diffusion in the model, and finds that the model dynamics exhibits complex pattern replication, and the pattern formation depends on the choice of the initial conditions. The ideas in this paper may provide a better understanding of the pattern formation in ecosystems.
文摘In this paper, we consider a predator-prey model. A sufficient conditionis presented for the stability of the equilibrium, which is different from the one for themodel with Hassell-Varley type functional response. Furthermore, by constructing aLyapunov function, we prove that the positive equilibrium is asymptotically stable.
文摘Prominent examples of predator-prey oscillations between prey-specific predators exist, but long-term data sets showing these oscillations are uncommon. We explored various models to describe the oscillating behavior of coyote (Canis latrans) and black-tailed jackrabbits (Lepus californicus) abundances in a sagebrush-steppe community in Curlew Valley, UT over a 31-year period between 1962 and 1993. We tested both continuous and discrete models which accounted for a variety of mechanisms to discriminate the most important factors affecting the time series. Both species displayed cycles in abundance with three distinct peaks at ten-year intervals. The coupled oscillations appear greater in the mid-seventies and a permanent increase in the coyote density seems apparent. Several factors could have influenced this predator-prey system including seasonality, predator satiation, density dependence, social structure among coyotes, and a change in the coyote bounty that took place during the course of data collection. Maximum likelihood estimation was used to obtain parameter values for the models, and Akaike Information Criterion (AIC) values were used to compare models. Coyote social structure and limiting resources in the form of density-dependence and satiation seemed to be important factors affecting population dynamics.
文摘The Lotka-Volterra predator-prey model is widely used in many disciplines such as ecology and economics. The model consists of a pair of first-order nonlinear differential equations. In this paper, we first analyze the dynamics, equilibria and steady state oscillation contours of the differential equations and study in particular a well-known problem of a high risk that the prey and/or predator may end up with extinction. We then introduce exogenous control to reduce the risk of extinction. We propose two control schemes. The first scheme, referred as convergence guaranteed scheme, achieves very fine granular control of the prey and predator populations, in terms of the final state and convergence dynamics, at the cost of sophisticated implementation. The second scheme, referred as on-off scheme, is very easy to implement and drive the populations to steady state oscillation that is far from the risk of extinction. Finally we investigate the robustness of these two schemes against parameter mismatch and observe that the on-off scheme is much more robust. Hence, we conclude that while the convergence guaranteed scheme achieves theoretically optimal performance, the on-off scheme is more attractive for practical applications.
文摘A predator-prey model with linear capture term Holling-II functional response was studied by using differential equation theory. The existence and the stabilities of non-negative equilibrium points of the model were discussed. The results show that under certain limited conditions, these two groups can maintain a balanced position, which provides a theoretical reference for relevant departments to make decisions on ecological protection.
文摘Mealybugs are a major pest for many crops (such as the vegetable Cassava, in Thailand). An environmentally-friendly bio-control method is implemented using an introduced predator (green lacewings) of the mealybugs to mitigate plant damage. This is analyzed so as to devise and determine an optimal strategy for control of the mealybug population. A predator-prey model has been proposed and analyzed to study the effect of the biological control of the spread of the mealybugs in the plant field. The behaviour of the system in terms of stability, phase space and bifurcation diagrams are considered. The results obtained from different numbers of predators being released are compared. In particular we obtain thresholds of introduced-predator level above which the prey is driven to extinction. Future models will include age-structured multi-compartments for both the prey and predator populations.
文摘The canard explosion phenomenon in a predator-prey model with Michaelis-Menten functional response is analyzed in this paper by employing the geometric singular perturbation theory. First, some turning points, such as, fold point, transcritical point, pitchfork point, canard point, are identified;then Hopf bifurcation, relaxation oscillation, together with the canard transition from Hopf bifurcation to relaxation oscillation are discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272051 and 11302172)
文摘The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant No.11272051)
文摘In this paper, we investigate the solution moment stability for a Harrison-type predator-prey model with parametric dichotomous noises. Using the Shapiro-Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses.
文摘In this paper, we investigate the dynamics of a stochastic predator-prey model with ratio-dependent functional response and disease in the prey. Firstly, we prove the existence and uniqueness of the positive solution for the stochastic model by using conventional methods. Then we obtain the threshold <img alt="" src="Edit_0a62b9be-7934-457b-aca3-af3420f5b5ee.png" /> for the infected prey population, that is, the disease will tend to extinction if <img alt="" src="Edit_e6cd63f6-de07-42be-a22a-8750d6c8aac9.png" />< 1, and it will exist in the long time if <img alt="" src="Edit_5964fdd8-a9fe-4dc2-b897-f4206f046f65.png" />> 1. Finally, the sufficient condition on the existence of a unique ergodic stationary distribution is obtained, which indicates that all the populations are permanent in the time mean sense. Numerical simulations are conducted to verify our analysis results.