Cultivated land extraction is essential for sustainable development and agriculture.In this paper,the network we propose is based on the encoder-decoder structure,which extracts the semantic segmentation neural networ...Cultivated land extraction is essential for sustainable development and agriculture.In this paper,the network we propose is based on the encoder-decoder structure,which extracts the semantic segmentation neural network of cultivated land from satellite images and uses it for agricultural automation solutions.The encoder consists of two part:the first is the modified Xception,it can used as the feature extraction network,and the second is the atrous convolution,it can used to expand the receptive field and the context information to extract richer feature information.The decoder part uses the conventional upsampling operation to restore the original resolution.In addition,we use the combination of BCE and Loves-hinge as a loss function to optimize the Intersection over Union(IoU).Experimental results show that the proposed network structure can solve the problem of cultivated land extraction in Yinchuan City.展开更多
The accurate acquisition of the grain crop planting area is a necessary condition for realizing precision agriculture.UAV remote sensing has the advantages of low cost use,simple operation,real-time acquisition of rem...The accurate acquisition of the grain crop planting area is a necessary condition for realizing precision agriculture.UAV remote sensing has the advantages of low cost use,simple operation,real-time acquisition of remote sensor images and high ground resolution.It is difficult to separate cultivated land from other terrain by using only a single feature,making it necessary to extract cultivated land by combining various features and hierarchical classification.In this study,the UAV platform was used to collect visible light remote sensing images of farmland to monitor and extract the area information,shape information and position information of farmland.Based on the vegetation index,texture information and shape information in the visible light band,the object-oriented method was used to study the best scheme for extracting cultivated land area.After repeated experiments,it has been determined that the segmentation scale 50 and the consolidation scale 90 are the most suitable segmentation parameters.Uncultivated crops and other features are separated by using the band information and texture information.The overall accuracy of this method is 86.40%and the Kappa coefficient is 0.80.The experimental results show that the UAV visible light remote sensing data can be used to classify and extract cultivated land with high precision.However,there are some cases where the finely divided plots are misleading,so further optimization and improvement are needed.展开更多
基金support for this work are as follows:Ningxia Hui Autonomous Region Key Research and Development Program Project:Research and demonstration application of key technologies for intelligent monitoring of spatial planning based on high-scoring remote sensing(Project No.2018YBZD1629).
文摘Cultivated land extraction is essential for sustainable development and agriculture.In this paper,the network we propose is based on the encoder-decoder structure,which extracts the semantic segmentation neural network of cultivated land from satellite images and uses it for agricultural automation solutions.The encoder consists of two part:the first is the modified Xception,it can used as the feature extraction network,and the second is the atrous convolution,it can used to expand the receptive field and the context information to extract richer feature information.The decoder part uses the conventional upsampling operation to restore the original resolution.In addition,we use the combination of BCE and Loves-hinge as a loss function to optimize the Intersection over Union(IoU).Experimental results show that the proposed network structure can solve the problem of cultivated land extraction in Yinchuan City.
基金We acknowledge that this research work was financially supported by the Leading Talents of Guangdong Province Program(Project No.2016LJ06G689)Educational Commission of Guangdong Province of China for Platform(Project No.2015KGJHZ007)+1 种基金Science and Technology Planning Project of Guangdong Province(Project No.2017B010117010)China Agriculture Research System(Project No.CARS-15-22)。
文摘The accurate acquisition of the grain crop planting area is a necessary condition for realizing precision agriculture.UAV remote sensing has the advantages of low cost use,simple operation,real-time acquisition of remote sensor images and high ground resolution.It is difficult to separate cultivated land from other terrain by using only a single feature,making it necessary to extract cultivated land by combining various features and hierarchical classification.In this study,the UAV platform was used to collect visible light remote sensing images of farmland to monitor and extract the area information,shape information and position information of farmland.Based on the vegetation index,texture information and shape information in the visible light band,the object-oriented method was used to study the best scheme for extracting cultivated land area.After repeated experiments,it has been determined that the segmentation scale 50 and the consolidation scale 90 are the most suitable segmentation parameters.Uncultivated crops and other features are separated by using the band information and texture information.The overall accuracy of this method is 86.40%and the Kappa coefficient is 0.80.The experimental results show that the UAV visible light remote sensing data can be used to classify and extract cultivated land with high precision.However,there are some cases where the finely divided plots are misleading,so further optimization and improvement are needed.