A long-term damage cumulative model for the duration of load effect of structural timber is proposed in this paper, which is economical in analysis as well as involving long-term hygrothermal effect. Based on the Mine...A long-term damage cumulative model for the duration of load effect of structural timber is proposed in this paper, which is economical in analysis as well as involving long-term hygrothermal effect. Based on the Miner linear damage cumulative theory, the cumulative damage model is applied to analyze the annual hygrothermal, daily cyclic thermal and daily cyclic relative humidity's effect on load-duration behavior and to calculate the sum of damage in one year. The results indicate that the annual and daily hygrothermal effect should be taken into consideration when calculating the damage accumulation, in which the influence levels from large to small are annual hygrothermal, daily relative humidity and daily thermal effect, Considering both annual and daily hygrothermal variations as external loads the long-term model is determined. Its application to service-life prediction of a historic timber structure verifies the feasibility and high-efficiency of the proposed approach.展开更多
Fatigue failure of mechanical part is treated as a random event.the fatigue reliablility problem can be solved through researching the random event.A new definition δb that measures fatigue damage quantity in a cycle...Fatigue failure of mechanical part is treated as a random event.the fatigue reliablility problem can be solved through researching the random event.A new definition δb that measures fatigue damage quantity in a cycle under cyclic stress is put forward. According to δ.the paper presents two new definitions K and D is fatigue damage strength.D is overall fatigue damage quantity.Using K and D to describe the fatigue failure of the parts,the paper puts forward a new fatigue cumulative damage probabilistic model of the mechanical parts.The model can be used to solve reliability fatigue problem.展开更多
The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradatio...The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradation process,cumulative damage model is used for degradation modeling.Assuming that damage increment is Gamma distribution,shock counting subjects to a homogeneous Poisson process(HPP)when degradation process is linear,and shock counting is a non-homogeneous Poisson process(NHPP)when degradation process is nonlinear.A two-stage degradation system is considered in this paper,for which the degradation process is linear in the first stage and the degradation process is nonlinear in the second stage.A nonlinear modeling method for considered system is put forward,and reliability model and remaining useful life model are established.A case study is given to validate the veracities of established models.展开更多
A class of lifetime distributions, new better than equilibrium in expectation (NBEE), and its dual, new worse than equilibrium in expectation (NWEE), are studied based on the comparison of the expectations of life...A class of lifetime distributions, new better than equilibrium in expectation (NBEE), and its dual, new worse than equilibrium in expectation (NWEE), are studied based on the comparison of the expectations of lifetime X and its equilibrium Xo. The relationships of the NBEE (NWEE) and other lifetime distribution classes are discussed. It is proved that the NBEE is very large, and increasing failure rate (IFR), new better than used (NBU) and the L class are its subclasses. The closure properties under two kinds of reliability operations, namely, convolution and mixture, are investigated. Furthermore, a Poisson shock model and a special cumulative model are also studied, in which the necessary and sufficient conditions for the NBEE (NWEE) lifetime distribution of the systems are established. In the homogenous Poisson shock model, the system lifetime belongs to NBEE(NWEE) if and only if the corresponding discrete failure distribution belongs to the discrete NBEE(NWEE). While in the cumulative model, the system has an NBEE lifetime if and only if the stochastic threshold of accumulated damage is NBEE.展开更多
An experimental study on performance of plain concrete under triaxial constant-amplitude and variable amplitude tension- compression cyclic loadings was carded out. The low level of the cyclic stress is 0. 2f and the ...An experimental study on performance of plain concrete under triaxial constant-amplitude and variable amplitude tension- compression cyclic loadings was carded out. The low level of the cyclic stress is 0. 2f and the upper level ranges between 0. 20f and 0. 55f., while the constant lateral pressure is 0. 3 f . The specimen failure mode, the three-stage evolution rule of the longitudinal strains and the damage evolution law under cyclic loading were analyzed. Furthermore, Miner's rule is proved not to be applicable to the cyclic loading conditions, hereby, a nonlinear cumulative damage model was established. Based on the model the remaining fatigue life was evaluated. The comparison whh the experiment resuhs shaws that the model is of better precision and applicability.展开更多
The performance degradation rates of the missile tank are generally time-varying functions uneasily evaluated by general classical evaluation methods. This paper develops a segmented nonlinear accelerated degradation ...The performance degradation rates of the missile tank are generally time-varying functions uneasily evaluated by general classical evaluation methods. This paper develops a segmented nonlinear accelerated degradation model (SNADM) based on the equivalent method of accumulative damage theory, which tackles the problem that product life is difficult to be determined with degradation rate being a function of the variable of time. A segmented expression of the function of population accumulative degradation is derived. And combined with nonlinear function, an accelerated degradation function, i.e., SNADM is obtained. The parameters of the SNADM are identified by numerical iteration, and the statistical function of degradation track is extrapolated. The reliability function is determined through the type of random process of the degradation distribution. Then an evaluation of product storage life is undertaken by combining the statistical function of degradation track, reliability function and threshold. An example of a missile tank undergoes a step-down stress accelerated degradation test (SDSADT), in which the results with the SNADM and the classical method are evaluated and compared. The technology introduced is validated with the resultant coincidence of both evaluated and field storage lives.展开更多
基金Supported by the National Natural Science Foundation of China (50708083)
文摘A long-term damage cumulative model for the duration of load effect of structural timber is proposed in this paper, which is economical in analysis as well as involving long-term hygrothermal effect. Based on the Miner linear damage cumulative theory, the cumulative damage model is applied to analyze the annual hygrothermal, daily cyclic thermal and daily cyclic relative humidity's effect on load-duration behavior and to calculate the sum of damage in one year. The results indicate that the annual and daily hygrothermal effect should be taken into consideration when calculating the damage accumulation, in which the influence levels from large to small are annual hygrothermal, daily relative humidity and daily thermal effect, Considering both annual and daily hygrothermal variations as external loads the long-term model is determined. Its application to service-life prediction of a historic timber structure verifies the feasibility and high-efficiency of the proposed approach.
文摘Fatigue failure of mechanical part is treated as a random event.the fatigue reliablility problem can be solved through researching the random event.A new definition δb that measures fatigue damage quantity in a cycle under cyclic stress is put forward. According to δ.the paper presents two new definitions K and D is fatigue damage strength.D is overall fatigue damage quantity.Using K and D to describe the fatigue failure of the parts,the paper puts forward a new fatigue cumulative damage probabilistic model of the mechanical parts.The model can be used to solve reliability fatigue problem.
基金National Outstanding Youth Science Fund Project,China(No.71401173)
文摘The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradation process,cumulative damage model is used for degradation modeling.Assuming that damage increment is Gamma distribution,shock counting subjects to a homogeneous Poisson process(HPP)when degradation process is linear,and shock counting is a non-homogeneous Poisson process(NHPP)when degradation process is nonlinear.A two-stage degradation system is considered in this paper,for which the degradation process is linear in the first stage and the degradation process is nonlinear in the second stage.A nonlinear modeling method for considered system is put forward,and reliability model and remaining useful life model are established.A case study is given to validate the veracities of established models.
基金The National Natural Science Foundation of China(No. 10801032)
文摘A class of lifetime distributions, new better than equilibrium in expectation (NBEE), and its dual, new worse than equilibrium in expectation (NWEE), are studied based on the comparison of the expectations of lifetime X and its equilibrium Xo. The relationships of the NBEE (NWEE) and other lifetime distribution classes are discussed. It is proved that the NBEE is very large, and increasing failure rate (IFR), new better than used (NBU) and the L class are its subclasses. The closure properties under two kinds of reliability operations, namely, convolution and mixture, are investigated. Furthermore, a Poisson shock model and a special cumulative model are also studied, in which the necessary and sufficient conditions for the NBEE (NWEE) lifetime distribution of the systems are established. In the homogenous Poisson shock model, the system lifetime belongs to NBEE(NWEE) if and only if the corresponding discrete failure distribution belongs to the discrete NBEE(NWEE). While in the cumulative model, the system has an NBEE lifetime if and only if the stochastic threshold of accumulated damage is NBEE.
文摘An experimental study on performance of plain concrete under triaxial constant-amplitude and variable amplitude tension- compression cyclic loadings was carded out. The low level of the cyclic stress is 0. 2f and the upper level ranges between 0. 20f and 0. 55f., while the constant lateral pressure is 0. 3 f . The specimen failure mode, the three-stage evolution rule of the longitudinal strains and the damage evolution law under cyclic loading were analyzed. Furthermore, Miner's rule is proved not to be applicable to the cyclic loading conditions, hereby, a nonlinear cumulative damage model was established. Based on the model the remaining fatigue life was evaluated. The comparison whh the experiment resuhs shaws that the model is of better precision and applicability.
文摘The performance degradation rates of the missile tank are generally time-varying functions uneasily evaluated by general classical evaluation methods. This paper develops a segmented nonlinear accelerated degradation model (SNADM) based on the equivalent method of accumulative damage theory, which tackles the problem that product life is difficult to be determined with degradation rate being a function of the variable of time. A segmented expression of the function of population accumulative degradation is derived. And combined with nonlinear function, an accelerated degradation function, i.e., SNADM is obtained. The parameters of the SNADM are identified by numerical iteration, and the statistical function of degradation track is extrapolated. The reliability function is determined through the type of random process of the degradation distribution. Then an evaluation of product storage life is undertaken by combining the statistical function of degradation track, reliability function and threshold. An example of a missile tank undergoes a step-down stress accelerated degradation test (SDSADT), in which the results with the SNADM and the classical method are evaluated and compared. The technology introduced is validated with the resultant coincidence of both evaluated and field storage lives.