Vertical cumulus momentum transport is an important physical process in the tropical atmosphere and plays a key role in the evolution of the tropical atmospheric system. This paper focuses on the impact of the vertica...Vertical cumulus momentum transport is an important physical process in the tropical atmosphere and plays a key role in the evolution of the tropical atmospheric system. This paper focuses on the impact of the vertical cumulus momentum transport on Madden-Julian Oscillation (MJO) simulation in two global climate models (GCMs). The Tiedtke cumulus parameterization scheme is applied to both GCMs [CAM2 and Spectral Atmospheric general circulation Model of LASG/IAP (SAMIL)]. It is found that the MJO simulation ability might be influenced by the vertical cumulus momentum transport through the cumulus parameterization scheme. However, the use of vertical momentum transport in different models provides different results. In order to improve model's MJO simulation ability, we must introduce vertical cumulus momentum transport in a more reasonable way into models. Furthermore, the coherence of the parameterization and the underlying model also need to be considered.展开更多
基金supported by the National Natural Science Foundation of China under (Grant No. 40575027)
文摘Vertical cumulus momentum transport is an important physical process in the tropical atmosphere and plays a key role in the evolution of the tropical atmospheric system. This paper focuses on the impact of the vertical cumulus momentum transport on Madden-Julian Oscillation (MJO) simulation in two global climate models (GCMs). The Tiedtke cumulus parameterization scheme is applied to both GCMs [CAM2 and Spectral Atmospheric general circulation Model of LASG/IAP (SAMIL)]. It is found that the MJO simulation ability might be influenced by the vertical cumulus momentum transport through the cumulus parameterization scheme. However, the use of vertical momentum transport in different models provides different results. In order to improve model's MJO simulation ability, we must introduce vertical cumulus momentum transport in a more reasonable way into models. Furthermore, the coherence of the parameterization and the underlying model also need to be considered.