The duty cycling process involves turning a radio into an active and dormant state for conserving energy. It is a promising approach for designing routing protocols for a resource-constrained Wireless Sensor Networks ...The duty cycling process involves turning a radio into an active and dormant state for conserving energy. It is a promising approach for designing routing protocols for a resource-constrained Wireless Sensor Networks (WSNs). In the duty cycle-based WSNs, the network lifetime is improved and the network transmission is increased as compared to conventional routing protocols. In this study, the active period of the duty cycle is divided into slots that can minimize the idle listening problem. The slot scheduling technique helps determine the most efficient node that uses the active period. The proposed routing protocol uses the opportunistic concept to minimize the sender waiting problem. Therefore, the forwarder set will be selected according to the node's residual active time and energy. Further, the optimum routing path is selected to achieve the minimum forwarding delay from the source to the destination. Simulation analysis reveals that the proposed routing scheme outperforms existing schemes in terms of the average transmission delay, energy consumption, and network throughput.展开更多
The internal curing effect of superabsorbent polymer(SAP) on the properties of high performance concrete(HPC) under marine wetting and drying cycles(WD cycles) was investigated. Compressive strength, hydration and chl...The internal curing effect of superabsorbent polymer(SAP) on the properties of high performance concrete(HPC) under marine wetting and drying cycles(WD cycles) was investigated. Compressive strength, hydration and chloride migration were experimentally investigated and the results were evaluated by compasison with those under fresh water curing(FW). Water absorption and porosity were also evaluated only under WD cycles. The results showed the important influence of wetting and drying cycles on the properties of SAP modified HPC properties. Carefully designed, SAP minimized the long-term compressive strength of HPC under marine WD cycles. The hydration rate was faster in the initial curing, but became lower as compared with that cured in FW. In addition, SAP improved the long-term water absorption resistance and chloride migration resistance of HPC under marine WD cycles. The examination of the porosity showed a lower increase of the volume of capillary pores in SAP modified HPC under long term WD cycles compared with that without SAP. Therefore, internal curing by SAP could improve the durability properties of HPC under marine WD cycles.展开更多
With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environmen...With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties.展开更多
To design the optimum acceleration control schedule for the Adaptive Cycle Engine(ACE)in the full flight envelope,this paper establishes a direct simulation model of the ACE transient state.In this model,geometric par...To design the optimum acceleration control schedule for the Adaptive Cycle Engine(ACE)in the full flight envelope,this paper establishes a direct simulation model of the ACE transient state.In this model,geometric parameters are used to replace the component state parameters.The corresponding relationship between geometric parameters and component state parameters is determined by sensitivity analysis.The geometric variables are controlled when the geometric adjustment speed exceeds the limit,and at the same time the corresponding component state parameters are iterated.The gradient optimization algorism is used to optimize the ground acceleration process of ACE,and the control schedule in terms of operating point of compression components and corrected acceleration rate is used as the full-envelope acceleration control schedule based on the similarity principle.The acceleration control schedules of the triple-bypass mode and the double-bypass mode are designed in this paper.The acceleration processes under various flight conditions are simulated using the acceleration control schedules.Compared with the acceleration process with the linear geometric adjustment schedule,the acceleration performance of ACE is improved by the acceleration control schedule,with the impulse of the acceleration process of the triple-bypass mode being increased by 8.7%-12.3% and the impulse of the double-bypass mode acceleration process being increased by 11.8%-14.1%.展开更多
Foreword ISO(the International Organization for Standardization)is a worldwide federation of national standards bodies(ISO member bodies).The work of preparing International Standards is normally carried out through I...Foreword ISO(the International Organization for Standardization)is a worldwide federation of national standards bodies(ISO member bodies).The work of preparing International Standards is normally carried out through ISO technical committees.Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee.展开更多
In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive ...In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further.展开更多
Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complex...Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complexity of the acceleration and deceleration control schedule.In order to resolve this problem,the Transient-state Reverse Method(TRM)is established in the present study based on the Steady-state Reverse Method(SRM)and the Virtual Power Extraction Method(VPEM).The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE.Obtained results are compared with the conventional component-based model from different aspects,including the accuracy and the convergence rate.The TRM is then employed to optimize the control schedule of a VCE.Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model.On the other hand,it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45%and 54%,respectively.Meanwhile,the surge margin of compressors,fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria.It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE.展开更多
The alternative working modes and flexible working states are the outstanding features of an adaptive cycle engine, with a proper control schedule design being the only way to exploit the performance of such an engine...The alternative working modes and flexible working states are the outstanding features of an adaptive cycle engine, with a proper control schedule design being the only way to exploit the performance of such an engine. However, unreasonable design in the control schedule causes not only performance deterioration but also serious aerodynamic stability problems. Thus, in this work,a hybrid optimization method that automatically chooses the working modes and identifies the optimal and smooth control schedules is proposed, by combining the differential evolution algorithm and the Latin hypercube sampling method. The control schedule architecture does not only optimize the engine steady-state performance under different working modes but also solves the control-schedule discontinuity problem, especially during mode transition. The optimal control schedules are continuous and almost monotonic, and hence are strongly suitable for a control system, and are designed for two different working conditions, i.e., supersonic and subsonic throttling,which proves that the proposed hybrid method applies to various working conditions. The evaluation demonstrates that the proposed control method optimizes the engine performance, the surge margin of the compression components, and the range of the thrust during throttling.展开更多
A modified shifting bottleneck algorithm was proposed to solve scheduling problems of a large-scale job shop.Firstly,a new structured algorithm was employed for sub-problems so as to reduce the computational burden an...A modified shifting bottleneck algorithm was proposed to solve scheduling problems of a large-scale job shop.Firstly,a new structured algorithm was employed for sub-problems so as to reduce the computational burden and suit for large-scale instances more effectively.The modified cycle avoidance method,incorporating with the disjunctive graph model and topological sort algorithm,was applied to guaranteeing the feasibility of solutions with considering delayed precedence constraints.Finally,simulation experiments were carried out to verify the feasibility and effectiveness of the modified method.The results demonstrate that the proposed algorithm can solve the large-scale job shop scheduling problems(JSSPs) within a reasonable period of time and obtaining satisfactory solutions simultaneously.展开更多
Aggregation is an important and commonplace operation in wireless sensor networks. Due to wireless interferences aggregation in wireless sensor networks often suffers from packet collisions. In order to solve the coll...Aggregation is an important and commonplace operation in wireless sensor networks. Due to wireless interferences aggregation in wireless sensor networks often suffers from packet collisions. In order to solve the collision problem aggregation scheduling is extensively researched in recent years. In many sensor network applications such as real-time monitoring, aggregation time is the most concerned performance. This paper considers the minimum-time aggregation scheduling problem in duty-cycled wireless sensor networks for the first time. We show that this problem is NP-hard and present an approximation algorithm based on connected dominating set. The theoretical analysis shows that the proposed algorithm is a nearly-constant approximation. Simulation shows that the scheduling algorithm has a good performance.展开更多
文摘The duty cycling process involves turning a radio into an active and dormant state for conserving energy. It is a promising approach for designing routing protocols for a resource-constrained Wireless Sensor Networks (WSNs). In the duty cycle-based WSNs, the network lifetime is improved and the network transmission is increased as compared to conventional routing protocols. In this study, the active period of the duty cycle is divided into slots that can minimize the idle listening problem. The slot scheduling technique helps determine the most efficient node that uses the active period. The proposed routing protocol uses the opportunistic concept to minimize the sender waiting problem. Therefore, the forwarder set will be selected according to the node's residual active time and energy. Further, the optimum routing path is selected to achieve the minimum forwarding delay from the source to the destination. Simulation analysis reveals that the proposed routing scheme outperforms existing schemes in terms of the average transmission delay, energy consumption, and network throughput.
基金Funded by National Key Research and Development Program of China(No.2017YFB0310000)Opening Project of State Key Laboratory of Green Building Materials(No.YA-584)the Key Technology Innovation Program from the Ministry of Science and Technology(Hubei Province)(No.2018AAA004)
文摘The internal curing effect of superabsorbent polymer(SAP) on the properties of high performance concrete(HPC) under marine wetting and drying cycles(WD cycles) was investigated. Compressive strength, hydration and chloride migration were experimentally investigated and the results were evaluated by compasison with those under fresh water curing(FW). Water absorption and porosity were also evaluated only under WD cycles. The results showed the important influence of wetting and drying cycles on the properties of SAP modified HPC properties. Carefully designed, SAP minimized the long-term compressive strength of HPC under marine WD cycles. The hydration rate was faster in the initial curing, but became lower as compared with that cured in FW. In addition, SAP improved the long-term water absorption resistance and chloride migration resistance of HPC under marine WD cycles. The examination of the porosity showed a lower increase of the volume of capillary pores in SAP modified HPC under long term WD cycles compared with that without SAP. Therefore, internal curing by SAP could improve the durability properties of HPC under marine WD cycles.
基金This research was funded by the National Natural Science Foundation of China(52078068)Practice Innovation Program of Jiangsu Province(KYCX22_3082).
文摘With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties.
基金co-supported by the National Science and Technology Major Project,China(No.J2019-I-0015-0014)the National Natural Science Foundation of China(No.52372397).
文摘To design the optimum acceleration control schedule for the Adaptive Cycle Engine(ACE)in the full flight envelope,this paper establishes a direct simulation model of the ACE transient state.In this model,geometric parameters are used to replace the component state parameters.The corresponding relationship between geometric parameters and component state parameters is determined by sensitivity analysis.The geometric variables are controlled when the geometric adjustment speed exceeds the limit,and at the same time the corresponding component state parameters are iterated.The gradient optimization algorism is used to optimize the ground acceleration process of ACE,and the control schedule in terms of operating point of compression components and corrected acceleration rate is used as the full-envelope acceleration control schedule based on the similarity principle.The acceleration control schedules of the triple-bypass mode and the double-bypass mode are designed in this paper.The acceleration processes under various flight conditions are simulated using the acceleration control schedules.Compared with the acceleration process with the linear geometric adjustment schedule,the acceleration performance of ACE is improved by the acceleration control schedule,with the impulse of the acceleration process of the triple-bypass mode being increased by 8.7%-12.3% and the impulse of the double-bypass mode acceleration process being increased by 11.8%-14.1%.
文摘Foreword ISO(the International Organization for Standardization)is a worldwide federation of national standards bodies(ISO member bodies).The work of preparing International Standards is normally carried out through ISO technical committees.Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee.
基金Funded by National Key R&D Program(No.2016YFC0701003)of Chinathe Fundamental Research Funds for the Central Universities
文摘In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further.
基金supported by the Aviation Power Foundation of China(6141B09050382)。
文摘Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complexity of the acceleration and deceleration control schedule.In order to resolve this problem,the Transient-state Reverse Method(TRM)is established in the present study based on the Steady-state Reverse Method(SRM)and the Virtual Power Extraction Method(VPEM).The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE.Obtained results are compared with the conventional component-based model from different aspects,including the accuracy and the convergence rate.The TRM is then employed to optimize the control schedule of a VCE.Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model.On the other hand,it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45%and 54%,respectively.Meanwhile,the surge margin of compressors,fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria.It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE.
基金funded by National Nature Science Foundation of China(Nos.51776010 and 91860205)supported by the Academic Excellence Foundation of BUAA for PhD Students,China。
文摘The alternative working modes and flexible working states are the outstanding features of an adaptive cycle engine, with a proper control schedule design being the only way to exploit the performance of such an engine. However, unreasonable design in the control schedule causes not only performance deterioration but also serious aerodynamic stability problems. Thus, in this work,a hybrid optimization method that automatically chooses the working modes and identifies the optimal and smooth control schedules is proposed, by combining the differential evolution algorithm and the Latin hypercube sampling method. The control schedule architecture does not only optimize the engine steady-state performance under different working modes but also solves the control-schedule discontinuity problem, especially during mode transition. The optimal control schedules are continuous and almost monotonic, and hence are strongly suitable for a control system, and are designed for two different working conditions, i.e., supersonic and subsonic throttling,which proves that the proposed hybrid method applies to various working conditions. The evaluation demonstrates that the proposed control method optimizes the engine performance, the surge margin of the compression components, and the range of the thrust during throttling.
基金National Natural Science Foundations of China(Nos.71471135,61273035)
文摘A modified shifting bottleneck algorithm was proposed to solve scheduling problems of a large-scale job shop.Firstly,a new structured algorithm was employed for sub-problems so as to reduce the computational burden and suit for large-scale instances more effectively.The modified cycle avoidance method,incorporating with the disjunctive graph model and topological sort algorithm,was applied to guaranteeing the feasibility of solutions with considering delayed precedence constraints.Finally,simulation experiments were carried out to verify the feasibility and effectiveness of the modified method.The results demonstrate that the proposed algorithm can solve the large-scale job shop scheduling problems(JSSPs) within a reasonable period of time and obtaining satisfactory solutions simultaneously.
基金supported by the Key Project of National Natural Science Foundation of China under Grant No.61033015the National Natural Science Foundation of China/Research Grants Council of Hong Kong Joint Research Scheme under Grant No.60831160525,and the National Natural Science Foundation of China under Grant No.60933001
文摘Aggregation is an important and commonplace operation in wireless sensor networks. Due to wireless interferences aggregation in wireless sensor networks often suffers from packet collisions. In order to solve the collision problem aggregation scheduling is extensively researched in recent years. In many sensor network applications such as real-time monitoring, aggregation time is the most concerned performance. This paper considers the minimum-time aggregation scheduling problem in duty-cycled wireless sensor networks for the first time. We show that this problem is NP-hard and present an approximation algorithm based on connected dominating set. The theoretical analysis shows that the proposed algorithm is a nearly-constant approximation. Simulation shows that the scheduling algorithm has a good performance.