A good understanding of the detailed temperature distribution in the furnace plays an important role in the implementation of operation optimization and design improvement of ethylene pyrolyzer. Numerical simulation o...A good understanding of the detailed temperature distribution in the furnace plays an important role in the implementation of operation optimization and design improvement of ethylene pyrolyzer. Numerical simulation of the turbulent flow, combustion and heat transfer was carried out to investigate the temperature distribution in industrial furnace. Inhomogeneities of the flue-gas temperature distribution were observed in X, Y, and Z direction of the furnace from the simulated results. Along the height of the furnace, the average flue-gas temperature increased initially and decreased afterward, and reached its peak at the height of 5 m. The reactor tube skin temperature varied not only along the height of the furnace, but also around the circumference of the tube. The heat flux profiles from the furnace towards the reactor tubes followed the shape of the average flue-gas temperature profile. The heat flux of the inlet tubes was constantly higher than that of the outlet tubes at the same height in the furnace.展开更多
Fast heat transfer in the pyrolyzer can increase the yield of pyrolysis gas and tar,and improve the quality of tar.Compared with the downer pyrolyzer,the cyclone pyrolyzer can simultaneously achieve high solids holdup...Fast heat transfer in the pyrolyzer can increase the yield of pyrolysis gas and tar,and improve the quality of tar.Compared with the downer pyrolyzer,the cyclone pyrolyzer can simultaneously achieve high solids holdup and violent turbulence,and correspondingly faster heat transfer.In this work,the heat transfer behavior in the cyclone pyrolyzer is specifically studied using the computational fluid dynamics-discrete element method.The simulation results reveal that the gas-solids heat convection contributes mainly to the heat transfer process,and the heat radiation and conduction are relatively small and almost negligible,respectively.Compared with the downer pyrolyzer under the same operating conditions,the heating rate is significantly increased in the cyclone pyrolyzer.By analyzing the flow characteristics in the cyclone pyrolyzer,it is found that the region of high convective heat transfer rate coincides with that of natural cyclone length.Additionally,the final coal temperature increases with the increase of gas velocity and exists a maximum value.These results can offer some qualitative understanding of the heat transfer behavior in the cyclone pyrolyzer.展开更多
Cyclone pyrolyzer is a novel type of downer that combines centrifugal force field and double-layer cyclone vortex.Research on transfer behavior is helpful to optimize the pyrolyzer to meet the needs of pyrolysis.In th...Cyclone pyrolyzer is a novel type of downer that combines centrifugal force field and double-layer cyclone vortex.Research on transfer behavior is helpful to optimize the pyrolyzer to meet the needs of pyrolysis.In this study,the Computational Particle Fluid Dynamics(CPFD)model is used to analyze the transfer behavior of binary particles,and finds that the swirl and reaction have a synergistic effect.This effect can increase the heating rate of the particles to the range of flash pyrolysis,and its mechanism lies in the flow field structure of the pyrolyzer.Due to the centrifugal force field,the particles gather to the near wall.The rapid swirl,which facilitates intense gas-solid heat transfer,leads to the rapid heating and pyrolysis of biomass particles.As the pyrolysis proceeds,the mass of the biomass particles becomes smaller and they are more easily affected by the gas flow in pyrolyzer.Under the action of gas flow,char particles serve as new heat carrier to form the inner cycle of particles,which strengthens the heating process.The pyrolysis products are discharged from the exhaust port in time with the flow field of the pyrolyzer to achieve separation from the heat carrier and inhibit the occurrence of secondary reactions.展开更多
文摘A good understanding of the detailed temperature distribution in the furnace plays an important role in the implementation of operation optimization and design improvement of ethylene pyrolyzer. Numerical simulation of the turbulent flow, combustion and heat transfer was carried out to investigate the temperature distribution in industrial furnace. Inhomogeneities of the flue-gas temperature distribution were observed in X, Y, and Z direction of the furnace from the simulated results. Along the height of the furnace, the average flue-gas temperature increased initially and decreased afterward, and reached its peak at the height of 5 m. The reactor tube skin temperature varied not only along the height of the furnace, but also around the circumference of the tube. The heat flux profiles from the furnace towards the reactor tubes followed the shape of the average flue-gas temperature profile. The heat flux of the inlet tubes was constantly higher than that of the outlet tubes at the same height in the furnace.
基金supported by Fundamental Research Program of Shanxi Province(No.202203021211164)supported by the National Natural Science Foundation of China(No.22108262),ShanxiProvinceScienceFoundationforYouthsS(No.20210302124600)+1 种基金Shanxi Province Foundation for Returness(No.2022-138)Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(No.20220014).
文摘Fast heat transfer in the pyrolyzer can increase the yield of pyrolysis gas and tar,and improve the quality of tar.Compared with the downer pyrolyzer,the cyclone pyrolyzer can simultaneously achieve high solids holdup and violent turbulence,and correspondingly faster heat transfer.In this work,the heat transfer behavior in the cyclone pyrolyzer is specifically studied using the computational fluid dynamics-discrete element method.The simulation results reveal that the gas-solids heat convection contributes mainly to the heat transfer process,and the heat radiation and conduction are relatively small and almost negligible,respectively.Compared with the downer pyrolyzer under the same operating conditions,the heating rate is significantly increased in the cyclone pyrolyzer.By analyzing the flow characteristics in the cyclone pyrolyzer,it is found that the region of high convective heat transfer rate coincides with that of natural cyclone length.Additionally,the final coal temperature increases with the increase of gas velocity and exists a maximum value.These results can offer some qualitative understanding of the heat transfer behavior in the cyclone pyrolyzer.
基金supported by CIRP Open Fund of Radiation Protection Laboratories(grant No.CIRP-RGC-2022-02)Fundamental Research Program of Shanxi Province(grant No.202203021211164)+3 种基金General Program of National Natural Science Foundation of China(grant No.22378285)the National Natural Science Foundation of China(grant No.22108262)Fundamental Research Program of Shanxi Province(grant No.20210302124600)Shanxi Province Foundation for Returness(grant No.2022-138)and Fund Program。
文摘Cyclone pyrolyzer is a novel type of downer that combines centrifugal force field and double-layer cyclone vortex.Research on transfer behavior is helpful to optimize the pyrolyzer to meet the needs of pyrolysis.In this study,the Computational Particle Fluid Dynamics(CPFD)model is used to analyze the transfer behavior of binary particles,and finds that the swirl and reaction have a synergistic effect.This effect can increase the heating rate of the particles to the range of flash pyrolysis,and its mechanism lies in the flow field structure of the pyrolyzer.Due to the centrifugal force field,the particles gather to the near wall.The rapid swirl,which facilitates intense gas-solid heat transfer,leads to the rapid heating and pyrolysis of biomass particles.As the pyrolysis proceeds,the mass of the biomass particles becomes smaller and they are more easily affected by the gas flow in pyrolyzer.Under the action of gas flow,char particles serve as new heat carrier to form the inner cycle of particles,which strengthens the heating process.The pyrolysis products are discharged from the exhaust port in time with the flow field of the pyrolyzer to achieve separation from the heat carrier and inhibit the occurrence of secondary reactions.