One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage ...One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage sludge via the using of conventional curing agents and calcined aluminum salts,and the corresponding dewatering mechanisms and structural changes of the stabilized sludge were further comparable analyzed.Experimental results showed that wollastonite and kaolin exhibit a relative higher dewatering efficiency as compared to other conventional curing agents; however the releasing rate of heavy metals of Cu,Cr,Ni for kaolin solidification and Zn,Pb for wollastonite solidification is higher than the sludge samples solidified by other curing agents. For comparison,the sludge samples solidified by calcined aluminum salts (AS),calcium ash,Mg-based curing agent,tricalcium aluminate( C_3A) show a lower heavy metals leaching potential and unconfined compressive strength. In addition,the economic characteristics and local availability of AS,calcium ash,C_3A and CaO makes it have a broad prospect in extension and application. These findings are of great significance for stabilization and dewatering of sewage sludge.展开更多
To obtain high-efficiency flame retardancy of epoxy resins,a cyclophosphazene derivative tri-(ohenylenediamino)cyclotriphosphazene(3 ACP)was successfully synthesized and used as a curing agent for the thermosetting of...To obtain high-efficiency flame retardancy of epoxy resins,a cyclophosphazene derivative tri-(ohenylenediamino)cyclotriphosphazene(3 ACP)was successfully synthesized and used as a curing agent for the thermosetting of an epoxy resin system.The flame retardant properties,thermal stability,and pyrolysis mechanism of the resultant thermosets were investigated in detail.The experiments indicated that the synthesized thermoset achieved a UL-94 V-0 rate under a vertical burning test as well as a limiting oxygen index(LOI)of 29.2%,which was able to reach V-0 even when a small amount of 3 ACP was incorporated.Scanning electronic microscopic observation demonstrated that the char residue of the thermosets was extremely expanded after the vertical flame test.Thermal analysis showed that the samples had a lower initial decomposition temperature when 3 ACP was introduced into the epoxy resin systems.This indicates that the carbonization ability of the thermosets was significantly improved at elevated temperatures.In addition,the incorporation of 3 ACP can effectively suppress the release of combustible gases during the pyrolysis process,and the decomposition of E-44/DDS-3 ACP curing systems also promotes the formation of polyphosphoramides charred layer in the condensed phase.The investigation on the chemical structures of both the gaseous and condensed phase pyrolysis process confirmed the flame-retardant mechanism of the 3 ACP-cured epoxy resins.Therefore,the nonflammable halogen-free epoxy resin developed in this study has potential applications in electric and electronic fields for environment protection and human health.展开更多
Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using ...Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.展开更多
By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual...By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual hydrophilic modified polyurethane curing agent.Research revealed that introducing PEG400 for hydrophilic chain segments and sodium hydroxyethyl sulfonate for hydrophilic ionic groups in the polyurethane curing agent component leads to a uniform distribution of hydrophilic components,significantly enhancing compatibility with the aqueous polyol component,and results in excellent film performance.The synthesis process and film were characterized using Fourier transform infrared spectroscopy and high-resolution scanning electron microscopy in the study.展开更多
A novel waterborne epoxy curing agent was prepared using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a termination agent of adduct, which was synthesized by triethylene tetramine (TETA) and liquid epoxy resin (...A novel waterborne epoxy curing agent was prepared using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a termination agent of adduct, which was synthesized by triethylene tetramine (TETA) and liquid epoxy resin (E-51). The effects of the reaction temperature and time on the synthesis process were investigated experimentally. The particle size and the distribution of water dispersion of the curing agent were measured by dynamic light scattering(DLS). The structure of the products was characterized by Fourier transform infrared spec-trometer (FTIR) and ^1H-nuclear magnetic resonance (^1H NMR). The properties of the synthesized curing agent and the epoxy resin film cured by it were also measured. The results showed that the appropriate temperature for the synthesis of adduct was at 65-75℃ and the reaction time was 4-5h, and that the suitable reaction temperature of curing agent synthesis was 75-85℃ and the reaction time was 3-4h. When the mass ratios of GPTMS and acetic acid were 3%-5% and 5%-10% respectively, the hardness, water resistance and adhesion of the cured film were improved significantly.展开更多
A novel novolac curing agent containing both naphthalene and dicyclopentadiene (DCPD) moieties was prepared to produce a highly heat-resistant cured polymer network. The chemical structure was characterized using Four...A novel novolac curing agent containing both naphthalene and dicyclopentadiene (DCPD) moieties was prepared to produce a highly heat-resistant cured polymer network. The chemical structure was characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, mass spectrometry, and gel permeation chro-matography analyses. The thermal properties of the resulting polymer from diglycidyl ether of bisphenol A epoxy resin cured with the novel curing agent were evaluated using dynamic mechanical thermal analysis and thermogra-vimetric analysis. Compared with the conventional curing agent, the resulting polymer cured with naphtha-lene/DCPD navolac shows considerable improvement in heat resistant properties such as higher glass transition temperature (Tg) and thermal stability. The result also shows better moisture resistance because of the hydrophobic nature of naphthalene/DCPD structure.展开更多
This work experimentally examined the optimal proportioning of sludge curing agent for dewatered sludge curing on solidified sludge,two components sludge curing agent consisted of cement and slag,and three components ...This work experimentally examined the optimal proportioning of sludge curing agent for dewatered sludge curing on solidified sludge,two components sludge curing agent consisted of cement and slag,and three components consisted of cement,slag and inorganic salt. The results showed that,increasing of curing ages could increase unconfined compressive strength and reduce moisture content for solidified sludge. For the test of two components,the biggest unconfined compressive strength of the solidified sludge achieved to 543. 72 kPa and the minimum moisture content achieved to 3. 56% of 21 d. The optimum proportion of the sludge curing agent of two components is sludge: cement: slag = 1 ∶ 0. 05 ∶ 0. 2 which selected by Design-expert. It could rapidly increasing the unconfined compressive strength of solidified sludge when added three components sludge curing agent( sludge: cement: slag: MgSO4= 1 ∶ 0. 05 ∶ 0. 2 ∶ 0. 03) on sludge curing. The results showed that,curing ages of 7 d,the unconfined compressive strength could achieve to 126. 74 kPa,which was more than 11 times comparison with the solidified sludge curing by two components curing agent. Two or three components sludge curing agent all could stabilize the heavy metals on solidified sludge and the leaching of heavy metals was below the government standard,while the stability of the heavy metals was superior for three components sludge curing agent.展开更多
Thermosetting acrylic coatings were prepared by using carboxyl acid group-containing acrylic oligomer and curing with titanium-oxo-clusters which were first pre-hydrolyzed from titanium n-butoxide.The curing ability o...Thermosetting acrylic coatings were prepared by using carboxyl acid group-containing acrylic oligomer and curing with titanium-oxo-clusters which were first pre-hydrolyzed from titanium n-butoxide.The curing ability of the titanium-oxo-cluster was examined using a microdielectric analytical(DEA)curing monitor,Fourier transformed infrared spectroscopy(FTIR),and Soxhlet extraction experiments,and the properties of the resulted coatings were investigated with pendulum hardness tester,dynamic mechanical analysis(DMA),thermogravimetric analysis(TGA)and ultraviolet-visible spectrometer.The effect of titania-oxo-cluster in leading acrylic oligomers to form thermosetting acrylic coatings was confirmed.An increasing pendulum hardness and modulus of acrylic coatings with increasing titania content was observed, which resulted from the increment of crosslinking degree rather than of the titania content.The thermosetting acrylic/titania coatings also showed better thermal stability and higher UV-blocking properties than those coatings using organic curing agent.展开更多
Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliabl...Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.展开更多
The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified ...The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified by using a wide range of test methods,including XRD and SEM.A method of saturated NH_(4)HCO_(3) solution as a curing agent was identified to improve the carbonation efficiency and enhance the carbonation degree of γ-C_(2)S,and then a high-strength carbonated specimen was obtained.Microhardness analysis and SEM morphology analysis were conducted on the carbonised specimens obtained under atmospheric pressure carbonisation conditions using the curing agent.It was found that γ-C_(2)S could perform carbonisation well under atmospheric pressure,which promoted the carbonisation efficiency and decreased the carbonisation cost simultaneously.Therefore,a new carbonisation process solution was proposed for the rapid carbonisation of γ-C_(2)S.展开更多
For the production of reactive polyurethane cross-linkinger and curing agents, 2, 4-diisocyanate toluene (TDI) terpolymer, which possesses the rigid structures of hexatomic ring and three reactive functional groups,...For the production of reactive polyurethane cross-linkinger and curing agents, 2, 4-diisocyanate toluene (TDI) terpolymer, which possesses the rigid structures of hexatomic ring and three reactive functional groups, was synthesized and characterized by the Fourier transform infrared (FFIR), the gel permeation chromatography (GPC) and the chemical analysis methods. The reaction conditions were studied and optimized. A tracking research on the polymerization process of TDI was taken by using the GPC. The formation processes of the terpolymer, oligomers and higher-polymers were also dealt with. Results show that the TDI terpolymer can be prepared in the presence of Cat-3 catalyst and at the reaction temperature of (60 ±2)℃. The reaction time is short, its outcomes have narrow molecular weights distribution, namely molecular weights from 530 to 550, Mw/Mn =1.10, and the mass fraction of NCO is (25. 0 ± 0. 5)%. With the reaction time prolonging, however, TDI can be further higher-polymedzed to form higher-polymers. Benzoyl chloride (0. 4%, mass fraction), as the stabilizing agent, can effectively inhibit the occurrence of higher-polymerization. The obtained TDI terpolymer can be stable for more than half a year.展开更多
Aging of a solid composite propellant containing HTPB/AP/AL was performed in order to validate the conformance of the accelerated aging data to the Arrhenius law. The main objective of the work was to examine the infl...Aging of a solid composite propellant containing HTPB/AP/AL was performed in order to validate the conformance of the accelerated aging data to the Arrhenius law. The main objective of the work was to examine the influence of the aziridine bonding agents family on the propellant aging. Aging of the prepared propellant samples was conducted as follows: 1. Four samples, one free of bonding agents, and three containing aziridine based bonding agents MAPO,HX-752, MAT4 were aged at 65°C. 2. Another four samples based on HX-752, MAT4 with different curing agents were aged at 65°C. The measured mechanical properties of the free bonding agent propellant samples were very far from the specifications and this illustrates the importance of the bonding agents in both the preparation and the aging phases.The prepared bonding agent 'MAT4' gave remarkable improvements of the mechanical properties comparing with HX-752 and MAPO. The aziridine bonding agents family inhibited the rate of decomposition of the propellant during the aging periods and supported the propellant matrix against decomposition at the elevate temperatures. Using of HMDI as curing agent gave slight better mechanical properties to the IPDI.展开更多
It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranc...It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranched toughener,carboxylic acid-functionalized tannic acid(CATA),was successfully prepared and applicated to the preparation of solvent-free epoxy resins.The mechanical performance,morphology,structural characterization,and thermal characterization of toughened epoxy resin system were studied.The toughened epoxy resin system with only 1.0wt%CATA reached the highest impact strength,111%higher than the neat epoxy resin system.Notably,the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading.Nonphase-separated hybrids with significant toughening effect were obtained.Additionally,the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading.This study provides an eco-friendly,cost-effective,and facile approach for the preparation of high-performance,solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields.展开更多
The influence of fly ash on the fresh properties, mechanical properties and carbonation properties were studied in this paper. The performance of a kind of curing agent which was applied to the hardened concrete surfa...The influence of fly ash on the fresh properties, mechanical properties and carbonation properties were studied in this paper. The performance of a kind of curing agent which was applied to the hardened concrete surface was evaluated. Incorporating large volume of fly ash will risk the concrete carbonation. The curing agent could prevent the concrete carbonation, and the mechanism was explained.展开更多
A novel boron-containing monomer,(4-(3,4-dicyanophenoxy)phenyl)boronic acid(BPhPN)was synthesized and used to promote the curing process of phthalonitrile monomer 1,3-bis(3,4-dicyanophenoxy)benzene(MPN).Differential s...A novel boron-containing monomer,(4-(3,4-dicyanophenoxy)phenyl)boronic acid(BPhPN)was synthesized and used to promote the curing process of phthalonitrile monomer 1,3-bis(3,4-dicyanophenoxy)benzene(MPN).Differential scanning calorimetry and rheological analysis were used to study the curing behaviors of BPhPN/MPN(namely B-MPN),and results suggested that B-MPN systems have better processibility.FTIR spectra and solid-state 13C-NMR exhibited triazine and isoindoline have been formed in the curing process.Boron-containing Lewis acid curing mechanism was preliminarily speculated and verified by two model compounds with different boron chemical environments.The thermogravimetric analysis and dynamic mechanical analysis demonstrated that the cured B-MPN polymers showed excellent thermal stability and heat resistance,which were comparable with conventional catalytic systems for phthalonitrile resins.This study not only presented a novel curing system for phthalonitrile resins,but also shed light on future design of high temperature thermosets.展开更多
Combined with the advantages of low melting point,high thermal stability and strong acidity,a multipleSO_3H functioned ionic liquid(MIL) was developed successfully as a curing agent to promote the curing reaction of...Combined with the advantages of low melting point,high thermal stability and strong acidity,a multipleSO_3H functioned ionic liquid(MIL) was developed successfully as a curing agent to promote the curing reaction of phthalonitrile-terminated poly(phthalazinone ether nitrile)(PPEN-Ph).The curing kinetics over differential scanning calorimetry(DSC) showed that both the initial curing temperature Tp0' and apparent activation energy Ea'(based on Kissinger equation) were reduced significantly over MIL(207.9℃ and 101.5 kJ/mol) compared to the common curing agent ZnCl_2(268.5℃ and 201.5 kJ/mol).Moreover,under identical curing conditions,the resulting thermosetting resin over former(Td5%=526.1℃) showed better thermal stability than that over latter(Td5%=512.1 ℃).These results indicated that MIL should be a good candidate as a curing agent for phthalonitrile resins.展开更多
The standard epoxy resin curing agents revealed are from unsustainable petroleum-based sources,which produce poisonous exhaust when cured.Amino acids,a bio-based epoxy curing agent with amino and carboxyl groups,are a...The standard epoxy resin curing agents revealed are from unsustainable petroleum-based sources,which produce poisonous exhaust when cured.Amino acids,a bio-based epoxy curing agent with amino and carboxyl groups,are another potential curing agent.Water-soluble epoxy resins cured with lysine(Lys),glutamic acid(Glu),leucine(Leu),and serine(Ser)as amino acids were inves-tigated.The results showed that the water-soluble epoxy resin(glycerol epoxy resins,GER)was cured with Lys and Glu after reacting.Fourier transform infrared(FT-IR)spectroscopic analysis of the GER-Lys showed that the amino and carboxyl groups of Lys primarily reacted with the epoxy groups of GER.The elongation at break of Lys-cured GER(GER-Lys)cured at 70℃ with a molar ratio of 1꞉0.75 was 75.32%.The fact that elongations at break of GER-Lys(79.43%)were higher than those of GER-Glu(17.33%),respectively supports the decrease of crosslinking density by the amino acid-cured GER reaction.The potential of Lys and Glu alternatives for petrochemical amines is demonstrated and provides promising opportunities for industrial application.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51408159)the China Postdoctoral Science Foundation of China(Grant No.2013T60375 and 2012M520744)
文摘One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage sludge via the using of conventional curing agents and calcined aluminum salts,and the corresponding dewatering mechanisms and structural changes of the stabilized sludge were further comparable analyzed.Experimental results showed that wollastonite and kaolin exhibit a relative higher dewatering efficiency as compared to other conventional curing agents; however the releasing rate of heavy metals of Cu,Cr,Ni for kaolin solidification and Zn,Pb for wollastonite solidification is higher than the sludge samples solidified by other curing agents. For comparison,the sludge samples solidified by calcined aluminum salts (AS),calcium ash,Mg-based curing agent,tricalcium aluminate( C_3A) show a lower heavy metals leaching potential and unconfined compressive strength. In addition,the economic characteristics and local availability of AS,calcium ash,C_3A and CaO makes it have a broad prospect in extension and application. These findings are of great significance for stabilization and dewatering of sewage sludge.
基金financially supported by the National Natural Science Foundation of China(No.51773010)the Fundamental Research Funds for the Central Universities(No.XK1802-2)。
文摘To obtain high-efficiency flame retardancy of epoxy resins,a cyclophosphazene derivative tri-(ohenylenediamino)cyclotriphosphazene(3 ACP)was successfully synthesized and used as a curing agent for the thermosetting of an epoxy resin system.The flame retardant properties,thermal stability,and pyrolysis mechanism of the resultant thermosets were investigated in detail.The experiments indicated that the synthesized thermoset achieved a UL-94 V-0 rate under a vertical burning test as well as a limiting oxygen index(LOI)of 29.2%,which was able to reach V-0 even when a small amount of 3 ACP was incorporated.Scanning electronic microscopic observation demonstrated that the char residue of the thermosets was extremely expanded after the vertical flame test.Thermal analysis showed that the samples had a lower initial decomposition temperature when 3 ACP was introduced into the epoxy resin systems.This indicates that the carbonization ability of the thermosets was significantly improved at elevated temperatures.In addition,the incorporation of 3 ACP can effectively suppress the release of combustible gases during the pyrolysis process,and the decomposition of E-44/DDS-3 ACP curing systems also promotes the formation of polyphosphoramides charred layer in the condensed phase.The investigation on the chemical structures of both the gaseous and condensed phase pyrolysis process confirmed the flame-retardant mechanism of the 3 ACP-cured epoxy resins.Therefore,the nonflammable halogen-free epoxy resin developed in this study has potential applications in electric and electronic fields for environment protection and human health.
基金Funded by the National Key Research and Development Program of China (No.2019YFC1906202)the Guangxi Key Research and Development Plan (Nos.Guike AA18242007-3, Guike AB19259008, and Guike AB20297014)。
文摘Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength.
文摘By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual hydrophilic modified polyurethane curing agent.Research revealed that introducing PEG400 for hydrophilic chain segments and sodium hydroxyethyl sulfonate for hydrophilic ionic groups in the polyurethane curing agent component leads to a uniform distribution of hydrophilic components,significantly enhancing compatibility with the aqueous polyol component,and results in excellent film performance.The synthesis process and film were characterized using Fourier transform infrared spectroscopy and high-resolution scanning electron microscopy in the study.
文摘A novel waterborne epoxy curing agent was prepared using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a termination agent of adduct, which was synthesized by triethylene tetramine (TETA) and liquid epoxy resin (E-51). The effects of the reaction temperature and time on the synthesis process were investigated experimentally. The particle size and the distribution of water dispersion of the curing agent were measured by dynamic light scattering(DLS). The structure of the products was characterized by Fourier transform infrared spec-trometer (FTIR) and ^1H-nuclear magnetic resonance (^1H NMR). The properties of the synthesized curing agent and the epoxy resin film cured by it were also measured. The results showed that the appropriate temperature for the synthesis of adduct was at 65-75℃ and the reaction time was 4-5h, and that the suitable reaction temperature of curing agent synthesis was 75-85℃ and the reaction time was 3-4h. When the mass ratios of GPTMS and acetic acid were 3%-5% and 5%-10% respectively, the hardness, water resistance and adhesion of the cured film were improved significantly.
文摘A novel novolac curing agent containing both naphthalene and dicyclopentadiene (DCPD) moieties was prepared to produce a highly heat-resistant cured polymer network. The chemical structure was characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, mass spectrometry, and gel permeation chro-matography analyses. The thermal properties of the resulting polymer from diglycidyl ether of bisphenol A epoxy resin cured with the novel curing agent were evaluated using dynamic mechanical thermal analysis and thermogra-vimetric analysis. Compared with the conventional curing agent, the resulting polymer cured with naphtha-lene/DCPD navolac shows considerable improvement in heat resistant properties such as higher glass transition temperature (Tg) and thermal stability. The result also shows better moisture resistance because of the hydrophobic nature of naphthalene/DCPD structure.
基金Sponsored by the Technology Research Projects of Harbin Science and Technology Bureau(Grant No.2010AA4CS024)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201192)+1 种基金the National Natural Science Key Foundation of China(Grant No.51206036)the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(Grant No.2013DX04)
文摘This work experimentally examined the optimal proportioning of sludge curing agent for dewatered sludge curing on solidified sludge,two components sludge curing agent consisted of cement and slag,and three components consisted of cement,slag and inorganic salt. The results showed that,increasing of curing ages could increase unconfined compressive strength and reduce moisture content for solidified sludge. For the test of two components,the biggest unconfined compressive strength of the solidified sludge achieved to 543. 72 kPa and the minimum moisture content achieved to 3. 56% of 21 d. The optimum proportion of the sludge curing agent of two components is sludge: cement: slag = 1 ∶ 0. 05 ∶ 0. 2 which selected by Design-expert. It could rapidly increasing the unconfined compressive strength of solidified sludge when added three components sludge curing agent( sludge: cement: slag: MgSO4= 1 ∶ 0. 05 ∶ 0. 2 ∶ 0. 03) on sludge curing. The results showed that,curing ages of 7 d,the unconfined compressive strength could achieve to 126. 74 kPa,which was more than 11 times comparison with the solidified sludge curing by two components curing agent. Two or three components sludge curing agent all could stabilize the heavy metals on solidified sludge and the leaching of heavy metals was below the government standard,while the stability of the heavy metals was superior for three components sludge curing agent.
基金supported by the National Natural Science Foundation of China(No.20774023)Shanghai Leading Academic Discipline Project(No.B113).
文摘Thermosetting acrylic coatings were prepared by using carboxyl acid group-containing acrylic oligomer and curing with titanium-oxo-clusters which were first pre-hydrolyzed from titanium n-butoxide.The curing ability of the titanium-oxo-cluster was examined using a microdielectric analytical(DEA)curing monitor,Fourier transformed infrared spectroscopy(FTIR),and Soxhlet extraction experiments,and the properties of the resulted coatings were investigated with pendulum hardness tester,dynamic mechanical analysis(DMA),thermogravimetric analysis(TGA)and ultraviolet-visible spectrometer.The effect of titania-oxo-cluster in leading acrylic oligomers to form thermosetting acrylic coatings was confirmed.An increasing pendulum hardness and modulus of acrylic coatings with increasing titania content was observed, which resulted from the increment of crosslinking degree rather than of the titania content.The thermosetting acrylic/titania coatings also showed better thermal stability and higher UV-blocking properties than those coatings using organic curing agent.
基金funded by the National Natural Science(Grant No.52274015)。
文摘Sustained casing pressure(SCP)is a crucial issue in the oil and gas production lifecycle.Epoxy resins,exhibiting exceptional compressive strength,ductility,and shear bonding strength,have the potential to form reliable barriers.The injectivity and sealing capacity of the epoxy resin is crucial parameters for the success of shallow remediation operations.This study aimed to develop and assess a novel solid-free resin sealant as an alternative to Portland cement for mitigating fluid leakage.The investigation evaluated the viscosity,compressive strength,and brittleness index of the epoxy resin sealant,as well as its tangential and normal shear strengths in conjunction with casing steel.The flow characteristics and sealing abilities of conventional cement and epoxy resin were comparatively analyzed in cracks.The results showed that the application of a viscosity reducer facilitated control over the curing time of the epoxy resin,ranging from 1.5 to 6 h,and reduced the initial viscosity from 865.53 to 118.71 m Pa,s.The mechanical properties of the epoxy resin initially increased with a rise in curing agent content before experiencing a minor decrease.The epoxy resin containing 30%curing agent exhibited optimal mechanical properties.After a 14-day curing period,the epoxy resin's compressive strength reached81.37 MPa,2.12 times higher than that of cement,whereas the elastic modulus of cement was 2.99 times greater than that of the epoxy resin.The brittleness index of epoxy resin is only 3.42,demonstrating high flexibility and toughness.The tangential and normal shear strengths of the epoxy resin exceeded those of cement by 3.17 and 2.82 times,respectively.In a 0.5 mm-wide crack,the injection pressure of the epoxy resin remained below 0.075 MPa,indicating superior injection and flow capabilities.Conversely,the injection pressure of cement surged dramatically to 2.61 MPa within 5 min.The breakthrough pressure of0.5 PV epoxy resin reached 7.53 MPa,decreasing the crack's permeability to 0.02 D,a mere 9.49%of the permeability observed following cement plugging.Upon sealing a 2 mm-wide crack using epoxy resin,the maximum breakthrough pressure attained 5.47 MPa,3.48 times of cement.These results suggest that epoxy resin sealant can be employed safely and effectively to seal cracks in the cement.
基金Funded by Hubei Technology Innovation Key Program (No.2018AAA004)。
文摘The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified by using a wide range of test methods,including XRD and SEM.A method of saturated NH_(4)HCO_(3) solution as a curing agent was identified to improve the carbonation efficiency and enhance the carbonation degree of γ-C_(2)S,and then a high-strength carbonated specimen was obtained.Microhardness analysis and SEM morphology analysis were conducted on the carbonised specimens obtained under atmospheric pressure carbonisation conditions using the curing agent.It was found that γ-C_(2)S could perform carbonisation well under atmospheric pressure,which promoted the carbonisation efficiency and decreased the carbonisation cost simultaneously.Therefore,a new carbonisation process solution was proposed for the rapid carbonisation of γ-C_(2)S.
文摘For the production of reactive polyurethane cross-linkinger and curing agents, 2, 4-diisocyanate toluene (TDI) terpolymer, which possesses the rigid structures of hexatomic ring and three reactive functional groups, was synthesized and characterized by the Fourier transform infrared (FFIR), the gel permeation chromatography (GPC) and the chemical analysis methods. The reaction conditions were studied and optimized. A tracking research on the polymerization process of TDI was taken by using the GPC. The formation processes of the terpolymer, oligomers and higher-polymers were also dealt with. Results show that the TDI terpolymer can be prepared in the presence of Cat-3 catalyst and at the reaction temperature of (60 ±2)℃. The reaction time is short, its outcomes have narrow molecular weights distribution, namely molecular weights from 530 to 550, Mw/Mn =1.10, and the mass fraction of NCO is (25. 0 ± 0. 5)%. With the reaction time prolonging, however, TDI can be further higher-polymedzed to form higher-polymers. Benzoyl chloride (0. 4%, mass fraction), as the stabilizing agent, can effectively inhibit the occurrence of higher-polymerization. The obtained TDI terpolymer can be stable for more than half a year.
文摘Aging of a solid composite propellant containing HTPB/AP/AL was performed in order to validate the conformance of the accelerated aging data to the Arrhenius law. The main objective of the work was to examine the influence of the aziridine bonding agents family on the propellant aging. Aging of the prepared propellant samples was conducted as follows: 1. Four samples, one free of bonding agents, and three containing aziridine based bonding agents MAPO,HX-752, MAT4 were aged at 65°C. 2. Another four samples based on HX-752, MAT4 with different curing agents were aged at 65°C. The measured mechanical properties of the free bonding agent propellant samples were very far from the specifications and this illustrates the importance of the bonding agents in both the preparation and the aging phases.The prepared bonding agent 'MAT4' gave remarkable improvements of the mechanical properties comparing with HX-752 and MAPO. The aziridine bonding agents family inhibited the rate of decomposition of the propellant during the aging periods and supported the propellant matrix against decomposition at the elevate temperatures. Using of HMDI as curing agent gave slight better mechanical properties to the IPDI.
基金from the Special Fund for the Program for Zhejiang Provincial Natural Science Foundation of China(LZ16C160001)National Key Research and Development Program(2017YFD0601105),the National Natural Science Foundation of China(Grant No.21806142)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY20B070002).
文摘It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranched toughener,carboxylic acid-functionalized tannic acid(CATA),was successfully prepared and applicated to the preparation of solvent-free epoxy resins.The mechanical performance,morphology,structural characterization,and thermal characterization of toughened epoxy resin system were studied.The toughened epoxy resin system with only 1.0wt%CATA reached the highest impact strength,111%higher than the neat epoxy resin system.Notably,the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading.Nonphase-separated hybrids with significant toughening effect were obtained.Additionally,the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading.This study provides an eco-friendly,cost-effective,and facile approach for the preparation of high-performance,solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields.
基金Key Prograns for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-140)
文摘The influence of fly ash on the fresh properties, mechanical properties and carbonation properties were studied in this paper. The performance of a kind of curing agent which was applied to the hardened concrete surface was evaluated. Incorporating large volume of fly ash will risk the concrete carbonation. The curing agent could prevent the concrete carbonation, and the mechanism was explained.
基金financially supported by the National Natural Science Foundation of China(Nos.51803059,51873215 and 52003272)Beijing Natural Science Foundation of China(No.2204101)the Youth Innovation Promotion Association of CAS(No.2017047)。
文摘A novel boron-containing monomer,(4-(3,4-dicyanophenoxy)phenyl)boronic acid(BPhPN)was synthesized and used to promote the curing process of phthalonitrile monomer 1,3-bis(3,4-dicyanophenoxy)benzene(MPN).Differential scanning calorimetry and rheological analysis were used to study the curing behaviors of BPhPN/MPN(namely B-MPN),and results suggested that B-MPN systems have better processibility.FTIR spectra and solid-state 13C-NMR exhibited triazine and isoindoline have been formed in the curing process.Boron-containing Lewis acid curing mechanism was preliminarily speculated and verified by two model compounds with different boron chemical environments.The thermogravimetric analysis and dynamic mechanical analysis demonstrated that the cured B-MPN polymers showed excellent thermal stability and heat resistance,which were comparable with conventional catalytic systems for phthalonitrile resins.This study not only presented a novel curing system for phthalonitrile resins,but also shed light on future design of high temperature thermosets.
基金supported by National Natural Science Foundation of China(No.51273029)the Fundamental Research Funds for the Central Universities(No.DUT15RC(3)032)+1 种基金General Project of Scientific Research of the Education Department of Liaoning Province(No.L2015116)a collaborative project from Guangdong Provincial Key Laboratory of Mineral Physics and Materials(No.GLMPM-010)
文摘Combined with the advantages of low melting point,high thermal stability and strong acidity,a multipleSO_3H functioned ionic liquid(MIL) was developed successfully as a curing agent to promote the curing reaction of phthalonitrile-terminated poly(phthalazinone ether nitrile)(PPEN-Ph).The curing kinetics over differential scanning calorimetry(DSC) showed that both the initial curing temperature Tp0' and apparent activation energy Ea'(based on Kissinger equation) were reduced significantly over MIL(207.9℃ and 101.5 kJ/mol) compared to the common curing agent ZnCl_2(268.5℃ and 201.5 kJ/mol).Moreover,under identical curing conditions,the resulting thermosetting resin over former(Td5%=526.1℃) showed better thermal stability than that over latter(Td5%=512.1 ℃).These results indicated that MIL should be a good candidate as a curing agent for phthalonitrile resins.
基金funded by the National Key R&D Program of China(No.2022YFD2200105).
文摘The standard epoxy resin curing agents revealed are from unsustainable petroleum-based sources,which produce poisonous exhaust when cured.Amino acids,a bio-based epoxy curing agent with amino and carboxyl groups,are another potential curing agent.Water-soluble epoxy resins cured with lysine(Lys),glutamic acid(Glu),leucine(Leu),and serine(Ser)as amino acids were inves-tigated.The results showed that the water-soluble epoxy resin(glycerol epoxy resins,GER)was cured with Lys and Glu after reacting.Fourier transform infrared(FT-IR)spectroscopic analysis of the GER-Lys showed that the amino and carboxyl groups of Lys primarily reacted with the epoxy groups of GER.The elongation at break of Lys-cured GER(GER-Lys)cured at 70℃ with a molar ratio of 1꞉0.75 was 75.32%.The fact that elongations at break of GER-Lys(79.43%)were higher than those of GER-Glu(17.33%),respectively supports the decrease of crosslinking density by the amino acid-cured GER reaction.The potential of Lys and Glu alternatives for petrochemical amines is demonstrated and provides promising opportunities for industrial application.