In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)i...In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results.展开更多
Aiming at the PWM rectifier control strategy of sliding mode control, steady state performance weak Hamiltonian control dynamic tracking performance is poor, the coordinated compound control is proposed, the feedback ...Aiming at the PWM rectifier control strategy of sliding mode control, steady state performance weak Hamiltonian control dynamic tracking performance is poor, the coordinated compound control is proposed, the feedback linearization controller and sliding mode controller Hamiltonian system is obtained, and the design of a coordinated control strategy. In order to verify the accuracy of this method, MATLAB/Simulink is used for simulation analysis. The simulation results show that the composite control can achieve the coordinated dynamic rapid tracking and constant DC output and unit power factor operation, and satisfy the control requirements of the rectifier, effectively reducing the disturbance effect on the system. Compared with Hamiltonian control, the proposed method combines the advantages of the two methods, which have the fast tracking performance and excellent steady-state characteristics, and the research prospect is broad.展开更多
In this paper, a voltage oriented control strategy for three-level PWM rectifier based on Sliding Mode Control (SMC) is introduced in order to obtain fast and accurate response of dc-bus voltage. To verify the validit...In this paper, a voltage oriented control strategy for three-level PWM rectifier based on Sliding Mode Control (SMC) is introduced in order to obtain fast and accurate response of dc-bus voltage. To verify the validity of the analysis and the feasibility of the proposed control method a set of simulation tests have been conducted using Matlab/Simulink. The simulation results show that compared to the conventional PI controller, the SMC can reduce drastically the three-level rectifier’s voltage fluctuation and improve the dynamic response of dc-bus significantly.展开更多
To solve the problem of harmonic pollution to the power grid that caused by traditional diode rectifier and phase controlled rectifier, the unit power factor PWM rectifier is designed. The topology structure of the re...To solve the problem of harmonic pollution to the power grid that caused by traditional diode rectifier and phase controlled rectifier, the unit power factor PWM rectifier is designed. The topology structure of the rectifier circuit is introduced and the double closed-loop control strategy in three-phase stationary coordinate system is analyzed. For the deficiency of control strategy, the control strategy in two-phase synchronous rotating coordinate system is proposed. This makes the independent control of active current and reactive current to be realized. The simulation model of the PWM rectifier is built and the effectiveness of the control method proposed in this paper is verified by simulation.展开更多
Six-phase permanent magnet linear synchronous motor(PMLSM)for electromagnetic launch(EML)system presents the characteristics of a high order,nonlinearity,multivariable,strong coupling,and nonperiodic transient operati...Six-phase permanent magnet linear synchronous motor(PMLSM)for electromagnetic launch(EML)system presents the characteristics of a high order,nonlinearity,multivariable,strong coupling,and nonperiodic transient operation in the synchronous rotating coordinate system,posing a great challenge to the dynamic response ability of the current loop.Existing research on current decoupling control(CDC)mainly focuses on cross decoupling within a three-phase system,even though there are neither decoupling methods for multiphase systems nor effective evaluation criteria for the decoupling and dynamic response performances.From this perspective,this paper first presents an equivalent reduced-order complex-matrix dynamic mathematical model of six-phase PMLSM and analyze its transient coupling characteristics during the process of EML.Then,the CDC methods of six-phase PMLSM based on direct compensation and matrix diagonalization principles are realized,respectively,to accomplish the cross decoupling and back electromotive force decoupling within and between different three-phase windings.Finally,an all-round method is proposed,for the first time,to evaluate the decoupling performances and dynamic response performances of different CDC strategies for six-phase PMLSM.Significant superiority of deviation decoupling regulator in decoupling performance and robustness are verified based on high-speed EML experimental platform of six-phase PMLSM.展开更多
In the conventional cascade control structure of aerospace electrically powered actuators, the current(or electromagnetic torque) loop plays a critical role in realizing a rapid response for a digitally controlled B...In the conventional cascade control structure of aerospace electrically powered actuators, the current(or electromagnetic torque) loop plays a critical role in realizing a rapid response for a digitally controlled Brush Less Direct Current(BLDC) motor. Hysteresis Current Control(HCC) is an effective method in improving the performance of current control for a BLDC motor.Nevertheless, the varying modulating frequency in the traditional HCC causes severe problems on the safety of power devices and the electromagnetic compatibility design. A triangular carrier-based fixed-frequency HCC strategy is expanded by relaxing the constraints on the rising and descending rates of the winding current to advance the capability of HCC to realize fixed-frequency modulation in the steady state. Based on that, a new flexible-bound-size quasi-fixed-frequency HCC is proposed, and the range feasible to realize fixed-frequency modulation control can cover the entire running process in the steady state. Meanwhile, a corresponding digital control strategy is designed,and four digitalization rules are proposed to extend the capacity to achieve fixed-frequency modulation control to the unsteady working state, that is, a novel fixed-frequency modulation is realized.Simulation and experimental results prove the effectiveness of this improved fixed-frequency HCC strategy.展开更多
电流源型脉宽调制(Pulse width modulation,PWM)整流器因其网侧存在LC滤波器,系统的控制难度增加。传统直接功率控制策略下的整流器功率波形存在脉动,因模型预测控制具有卓越的动态特性以及直观的控制规律,采用模型预测直接功率控制(Mod...电流源型脉宽调制(Pulse width modulation,PWM)整流器因其网侧存在LC滤波器,系统的控制难度增加。传统直接功率控制策略下的整流器功率波形存在脉动,因模型预测控制具有卓越的动态特性以及直观的控制规律,采用模型预测直接功率控制(Model predictive direct power control,MPDPC)对传统控制策略进行改进。首先建立了三相PWM整流器的数学模型,给出了每个采样周期内的功率变化率,并推导出相邻采样周期之间的功率关系,然后给出基于单矢量的模型预测直接功率控制策略,提出了基于双矢量的模型预测直接功率控制策略,并优选出两个电流矢量,计算在一个采样周期内的作用时间,并对其进行修正。最后,在Matlab/Simulink仿真软件验证了所提控制策略的可行性和有效性。展开更多
This paper proposes a novel multi-pulse flexible-topology thyristor rectifier(FTTR) that can operate over a large voltage range while maintaining a low total harmonic distortion(THD) in the input current.The proposed ...This paper proposes a novel multi-pulse flexible-topology thyristor rectifier(FTTR) that can operate over a large voltage range while maintaining a low total harmonic distortion(THD) in the input current.The proposed multi-pulse FTTR has two operating modes:parallel mode and series mode.Irrespective of the mode in which it operates,the multi-pulse FTTR maintains the same pulses in the load current.To mitigate the harmonic injection into the AC mains,the topology-switching mechanism is then proposed.In addition,predictive current control is employed to achieve fast current response in both the transience and the transitions between modes.To verify the effectiveness of the multi-pulse FTTR as well as the control scheme,performance analysis based on an 18-pulse FTTR is investigated in detail,including fault tolerance evaluation,current THD analysis based on IEEE standard,and potential applications.Finally,a simulation model and the corresponding laboratory setup are developed.The results from both simulation and experiments demonstrate the feasibility of the proposed multi-pulse FTTR as well as the control scheme.展开更多
This paper explains step-by-step modeling and simulation of the full circuits of a battery control system and connected together starting from the AC input source to the battery control and storage system.The three-ph...This paper explains step-by-step modeling and simulation of the full circuits of a battery control system and connected together starting from the AC input source to the battery control and storage system.The three-phase half-controlled rectifier has been designed to control and convert the AC power into DC power.In addition,two types of direct current converters have been used in this paper which are a buck and bidirectional DC/DC converters.These systems adjust the output voltage to be lower or higher than the input voltage.In the buck converters,the main switch operates in conduction or cut-off mode and is triggered by a Pulse-Width Modulated(PWM)signal.The output and input voltage levels ratio are used to calculate thePWMsignal’s duty cycle.Therefore,the duty cycle indicates the operation mode of the converter in steady-state operation.In this study,we analyze and control of a buck converter with the PWM signal.Besides,the bidirectional DC/DC converter has been achieved and optimized by PI control methods to control the battery charging and discharging modes.The simulation has been applied via the Matlab/Simulink environment.The results show the activity of each part of the designed circuits starting from the converters and the battery control system in charge and discharge modes.展开更多
针对车载双重化脉宽调制(pulse width modulation,PWM)整流器控制性能易受到模型不确定性和列车运行条件(输入电压、功率等级、电路参数等)变化影响的问题,提出一种基于自抗扰控制(active disturbance rejection control,ADRC)和模型预...针对车载双重化脉宽调制(pulse width modulation,PWM)整流器控制性能易受到模型不确定性和列车运行条件(输入电压、功率等级、电路参数等)变化影响的问题,提出一种基于自抗扰控制(active disturbance rejection control,ADRC)和模型预测直接功率控制(model predictive direct power control,MPDPC)的双闭环控制算法。其中,外环基于自抗扰控制理论,构建了基于误差驱动的ADRC(error-based ADRC,EADRC)控制器调节直流侧电压;内环结合基于内模原理的功率补偿方案使用两步MPDPC算法实现电流信号的控制。仿真和实验将所提自抗扰模型预测直接功率控制(ADRC-MPDPC)算法与传统基于比例积分的直接功率控制(proportional integral-based direct power control,PI-DPC)算法和PI-MPDPC方法进行对比,结果表明所提策略在系统启动、负载变化及工况切换等场景表现出更优的动态特性和鲁棒性能。展开更多
基金National Natural Science Foundation of China(Nos.51767013,52067013)。
文摘In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results.
文摘Aiming at the PWM rectifier control strategy of sliding mode control, steady state performance weak Hamiltonian control dynamic tracking performance is poor, the coordinated compound control is proposed, the feedback linearization controller and sliding mode controller Hamiltonian system is obtained, and the design of a coordinated control strategy. In order to verify the accuracy of this method, MATLAB/Simulink is used for simulation analysis. The simulation results show that the composite control can achieve the coordinated dynamic rapid tracking and constant DC output and unit power factor operation, and satisfy the control requirements of the rectifier, effectively reducing the disturbance effect on the system. Compared with Hamiltonian control, the proposed method combines the advantages of the two methods, which have the fast tracking performance and excellent steady-state characteristics, and the research prospect is broad.
文摘In this paper, a voltage oriented control strategy for three-level PWM rectifier based on Sliding Mode Control (SMC) is introduced in order to obtain fast and accurate response of dc-bus voltage. To verify the validity of the analysis and the feasibility of the proposed control method a set of simulation tests have been conducted using Matlab/Simulink. The simulation results show that compared to the conventional PI controller, the SMC can reduce drastically the three-level rectifier’s voltage fluctuation and improve the dynamic response of dc-bus significantly.
文摘To solve the problem of harmonic pollution to the power grid that caused by traditional diode rectifier and phase controlled rectifier, the unit power factor PWM rectifier is designed. The topology structure of the rectifier circuit is introduced and the double closed-loop control strategy in three-phase stationary coordinate system is analyzed. For the deficiency of control strategy, the control strategy in two-phase synchronous rotating coordinate system is proposed. This makes the independent control of active current and reactive current to be realized. The simulation model of the PWM rectifier is built and the effectiveness of the control method proposed in this paper is verified by simulation.
基金This study was supported by the National Natural Science Foundation of China(No.52077219).
文摘Six-phase permanent magnet linear synchronous motor(PMLSM)for electromagnetic launch(EML)system presents the characteristics of a high order,nonlinearity,multivariable,strong coupling,and nonperiodic transient operation in the synchronous rotating coordinate system,posing a great challenge to the dynamic response ability of the current loop.Existing research on current decoupling control(CDC)mainly focuses on cross decoupling within a three-phase system,even though there are neither decoupling methods for multiphase systems nor effective evaluation criteria for the decoupling and dynamic response performances.From this perspective,this paper first presents an equivalent reduced-order complex-matrix dynamic mathematical model of six-phase PMLSM and analyze its transient coupling characteristics during the process of EML.Then,the CDC methods of six-phase PMLSM based on direct compensation and matrix diagonalization principles are realized,respectively,to accomplish the cross decoupling and back electromotive force decoupling within and between different three-phase windings.Finally,an all-round method is proposed,for the first time,to evaluate the decoupling performances and dynamic response performances of different CDC strategies for six-phase PMLSM.Significant superiority of deviation decoupling regulator in decoupling performance and robustness are verified based on high-speed EML experimental platform of six-phase PMLSM.
基金supported by the National Natural Science Foundation of China (Nos.51275021,61327807)
文摘In the conventional cascade control structure of aerospace electrically powered actuators, the current(or electromagnetic torque) loop plays a critical role in realizing a rapid response for a digitally controlled Brush Less Direct Current(BLDC) motor. Hysteresis Current Control(HCC) is an effective method in improving the performance of current control for a BLDC motor.Nevertheless, the varying modulating frequency in the traditional HCC causes severe problems on the safety of power devices and the electromagnetic compatibility design. A triangular carrier-based fixed-frequency HCC strategy is expanded by relaxing the constraints on the rising and descending rates of the winding current to advance the capability of HCC to realize fixed-frequency modulation in the steady state. Based on that, a new flexible-bound-size quasi-fixed-frequency HCC is proposed, and the range feasible to realize fixed-frequency modulation control can cover the entire running process in the steady state. Meanwhile, a corresponding digital control strategy is designed,and four digitalization rules are proposed to extend the capacity to achieve fixed-frequency modulation control to the unsteady working state, that is, a novel fixed-frequency modulation is realized.Simulation and experimental results prove the effectiveness of this improved fixed-frequency HCC strategy.
文摘电流源型脉宽调制(Pulse width modulation,PWM)整流器因其网侧存在LC滤波器,系统的控制难度增加。传统直接功率控制策略下的整流器功率波形存在脉动,因模型预测控制具有卓越的动态特性以及直观的控制规律,采用模型预测直接功率控制(Model predictive direct power control,MPDPC)对传统控制策略进行改进。首先建立了三相PWM整流器的数学模型,给出了每个采样周期内的功率变化率,并推导出相邻采样周期之间的功率关系,然后给出基于单矢量的模型预测直接功率控制策略,提出了基于双矢量的模型预测直接功率控制策略,并优选出两个电流矢量,计算在一个采样周期内的作用时间,并对其进行修正。最后,在Matlab/Simulink仿真软件验证了所提控制策略的可行性和有效性。
基金Project supported by the National Natural Science Foundation of China (No. 51177148)the Zhejiang Key Science and Technology Innovation Group Program,China (No. 2010R50021)
文摘This paper proposes a novel multi-pulse flexible-topology thyristor rectifier(FTTR) that can operate over a large voltage range while maintaining a low total harmonic distortion(THD) in the input current.The proposed multi-pulse FTTR has two operating modes:parallel mode and series mode.Irrespective of the mode in which it operates,the multi-pulse FTTR maintains the same pulses in the load current.To mitigate the harmonic injection into the AC mains,the topology-switching mechanism is then proposed.In addition,predictive current control is employed to achieve fast current response in both the transience and the transitions between modes.To verify the effectiveness of the multi-pulse FTTR as well as the control scheme,performance analysis based on an 18-pulse FTTR is investigated in detail,including fault tolerance evaluation,current THD analysis based on IEEE standard,and potential applications.Finally,a simulation model and the corresponding laboratory setup are developed.The results from both simulation and experiments demonstrate the feasibility of the proposed multi-pulse FTTR as well as the control scheme.
文摘This paper explains step-by-step modeling and simulation of the full circuits of a battery control system and connected together starting from the AC input source to the battery control and storage system.The three-phase half-controlled rectifier has been designed to control and convert the AC power into DC power.In addition,two types of direct current converters have been used in this paper which are a buck and bidirectional DC/DC converters.These systems adjust the output voltage to be lower or higher than the input voltage.In the buck converters,the main switch operates in conduction or cut-off mode and is triggered by a Pulse-Width Modulated(PWM)signal.The output and input voltage levels ratio are used to calculate thePWMsignal’s duty cycle.Therefore,the duty cycle indicates the operation mode of the converter in steady-state operation.In this study,we analyze and control of a buck converter with the PWM signal.Besides,the bidirectional DC/DC converter has been achieved and optimized by PI control methods to control the battery charging and discharging modes.The simulation has been applied via the Matlab/Simulink environment.The results show the activity of each part of the designed circuits starting from the converters and the battery control system in charge and discharge modes.
文摘针对车载双重化脉宽调制(pulse width modulation,PWM)整流器控制性能易受到模型不确定性和列车运行条件(输入电压、功率等级、电路参数等)变化影响的问题,提出一种基于自抗扰控制(active disturbance rejection control,ADRC)和模型预测直接功率控制(model predictive direct power control,MPDPC)的双闭环控制算法。其中,外环基于自抗扰控制理论,构建了基于误差驱动的ADRC(error-based ADRC,EADRC)控制器调节直流侧电压;内环结合基于内模原理的功率补偿方案使用两步MPDPC算法实现电流信号的控制。仿真和实验将所提自抗扰模型预测直接功率控制(ADRC-MPDPC)算法与传统基于比例积分的直接功率控制(proportional integral-based direct power control,PI-DPC)算法和PI-MPDPC方法进行对比,结果表明所提策略在系统启动、负载变化及工况切换等场景表现出更优的动态特性和鲁棒性能。