High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of th...High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.展开更多
The progressive current degradation and breakdown behaviors of GaN-based light emitting diodes under high reversebias stress are studied by combining the electrical, optical, and surface morphology characterizations. ...The progressive current degradation and breakdown behaviors of GaN-based light emitting diodes under high reversebias stress are studied by combining the electrical, optical, and surface morphology characterizations. The current features a typical “soft breakdown” behavior, which is linearly correlated to an increase of the accumulative number of electroluminescence spots. The time-to-failure for each failure site approximately obeys a Weibull distribution with slopes of about 0.67 and 4.09 at the infant and wear-out periods, respectively. After breakdown, visible craters can be observed at the device surface as a result of transient electrostatic discharge. By performing focused ion beam cuts coupled with scan electron microscope, we observed a local current shunt path in the surface layer, caused by the rapid microstructure deterioration due to significant current heating effect, consistent well with the optical beam induced resistance change observations.展开更多
The dependencies of hot-carrier-induced degradations on the effective channel length Lch,eff are investigated for n-type metal-oxide-semiconductor field effect transistor (MOSFETs). Our experiments find that, with d...The dependencies of hot-carrier-induced degradations on the effective channel length Lch,eff are investigated for n-type metal-oxide-semiconductor field effect transistor (MOSFETs). Our experiments find that, with decreasing Lch,eff, the saturation drain current (Iasat ) degradation is unexpectedly alleviated. The further study demonstrates that the anomalous Lch,eff dependence of Idsat degradation is induced by the increasing influence of the substrate current degradation on the lazar degradation with Lch,eff reducing.展开更多
In field emission devices, the emission current sometimes degrades with the time. The mechanism of the current degradation is complicated. In this paper, a program is used to simulate the movement of the electron beam...In field emission devices, the emission current sometimes degrades with the time. The mechanism of the current degradation is complicated. In this paper, a program is used to simulate the movement of the electron beam from a field emitter. According to the current distribution and the trajectories of the primary electron beam, it is shown that the residual gas is ionized and the ion pairs are generated. The trajectories of the positive ions are simulated. With the different locations and kinetic energy of i...展开更多
Ionizing-radiation-induced current gain degradation in NPN bipolar junction transistors is due to an increase in base current as a result of recombination at the surface of the device. A model is presented which ident...Ionizing-radiation-induced current gain degradation in NPN bipolar junction transistors is due to an increase in base current as a result of recombination at the surface of the device. A model is presented which identifies the physical mechanism responsible for current gain degradation. The increase in surface recombination velocity due to interface states results in an increase in base current. Besides, changing the surface potential along the base surface induced by the oxide-trapped charges can also lead to an increased base current. By combining the production mechanisms of oxide-trapped charges and interface states, this model can explain the fact that the current gain degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 70 krad(Si). The low dose rate was 0.1 rad(Si)/s and the high dose rate was 10 rad(Si)/s. The model accords well with the experimental results.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12302278,U2241267,12172155,and 11932008)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-48)the Natural Science Foundation of Gansu Province of China(No.24JRRA473)。
文摘High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.61504050 and 11604124)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20140168 and BK20150158)the Fundamental Research Funds for the Central Universities,China(Grant Nos.JUSRP51628B and JUSRP51510)
文摘The progressive current degradation and breakdown behaviors of GaN-based light emitting diodes under high reversebias stress are studied by combining the electrical, optical, and surface morphology characterizations. The current features a typical “soft breakdown” behavior, which is linearly correlated to an increase of the accumulative number of electroluminescence spots. The time-to-failure for each failure site approximately obeys a Weibull distribution with slopes of about 0.67 and 4.09 at the infant and wear-out periods, respectively. After breakdown, visible craters can be observed at the device surface as a result of transient electrostatic discharge. By performing focused ion beam cuts coupled with scan electron microscope, we observed a local current shunt path in the surface layer, caused by the rapid microstructure deterioration due to significant current heating effect, consistent well with the optical beam induced resistance change observations.
基金Supported by Hong Kong,Macao and Taiwan Science&Technology Cooperation Program of China under Grant No2014DFH10190the Distinguished Young Scientists Foundation of Jiangsu Province under Grant No BK20130021+1 种基金the National Natural Science Foundation of China under Grant Nos 61204083 and 61306092the Qing Lan Project
文摘The dependencies of hot-carrier-induced degradations on the effective channel length Lch,eff are investigated for n-type metal-oxide-semiconductor field effect transistor (MOSFETs). Our experiments find that, with decreasing Lch,eff, the saturation drain current (Iasat ) degradation is unexpectedly alleviated. The further study demonstrates that the anomalous Lch,eff dependence of Idsat degradation is induced by the increasing influence of the substrate current degradation on the lazar degradation with Lch,eff reducing.
文摘In field emission devices, the emission current sometimes degrades with the time. The mechanism of the current degradation is complicated. In this paper, a program is used to simulate the movement of the electron beam from a field emitter. According to the current distribution and the trajectories of the primary electron beam, it is shown that the residual gas is ionized and the ion pairs are generated. The trajectories of the positive ions are simulated. With the different locations and kinetic energy of i...
基金Project supported by the National Natural Science Foundation of China(Nos.61076101,61204092)
文摘Ionizing-radiation-induced current gain degradation in NPN bipolar junction transistors is due to an increase in base current as a result of recombination at the surface of the device. A model is presented which identifies the physical mechanism responsible for current gain degradation. The increase in surface recombination velocity due to interface states results in an increase in base current. Besides, changing the surface potential along the base surface induced by the oxide-trapped charges can also lead to an increased base current. By combining the production mechanisms of oxide-trapped charges and interface states, this model can explain the fact that the current gain degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 70 krad(Si). The low dose rate was 0.1 rad(Si)/s and the high dose rate was 10 rad(Si)/s. The model accords well with the experimental results.