期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A novel complex current ratio-based technique for transmission line protection 被引量:3
1
作者 Suryanarayana Gangolu Saumendra Sarangi 《Protection and Control of Modern Power Systems》 2020年第1期259-267,共9页
With respect to sensitivity,selectivity and speed of operation,the current differential scheme is a better way to protect transmission lines than overcurrent and distance-based schemes.However,the protection scheme ca... With respect to sensitivity,selectivity and speed of operation,the current differential scheme is a better way to protect transmission lines than overcurrent and distance-based schemes.However,the protection scheme can be severely influenced by the Line Charging Capacitive Current(LCCC)with increased voltage level and Current Transformer(CT)saturation under external close-in faults.This paper presents a new UHV/EHV current-based protection scheme using the ratio of phasor summation of the two-end currents to the local end current,instead of summation of the two-end currents,to discriminate the internal faults.The accuracy and effectiveness of the proposed protection technique are tested on the 110 kV Western System Coordinating Council(WSCC)9-bus system using PSCAD/MATLAB.The simulation results confirm the reliable operation of the proposed scheme during internal/external faults and its independence from fault location,fault resistance,type of fault,and variations in source impedance.Finally,the effectiveness of the proposed scheme is also verified with faults during power swing and in series compensated lines. 展开更多
关键词 current differential protection Line charging capacitive current CT saturation Fault discrimination Phasor summation of currents
原文传递
A review of the protection for the multi-terminal VSC-HVDC grid 被引量:23
2
作者 Bin Li Jiawei He +1 位作者 Ye Li Botong Li 《Protection and Control of Modern Power Systems》 2019年第1期251-261,共11页
The multi-terminal VSC-HVDC grid is believed to be widely applied in the future power system. The dc line protection is the key technique for operation security and power supply reliability of the dc grid. In this pap... The multi-terminal VSC-HVDC grid is believed to be widely applied in the future power system. The dc line protection is the key technique for operation security and power supply reliability of the dc grid. In this paper, the single-ended protections, namely, the traveling-wave based protection and transient-variable based protection, as well as the pilot protections, mainly including the directional pilot protection and current differential protection, are discussed in detail. With the analyzed protections, the effective main and back-up protection strategy can be configured for the dc line in multi-terminal VSC-HVDC grid. 展开更多
关键词 Multi-terminal VSC-HVDC grid Traveling-wave based protection Transient-variable based protection Directional pilot protection current differential protection
原文传递
IEC61850 standard-based harmonic blocking scheme for power transformers 被引量:9
3
作者 Senthil Krishnamurthy Bwandakassy Elenga Baningobera 《Protection and Control of Modern Power Systems》 2019年第1期123-137,共15页
Transformer Differential and overcurrent schemes are traditionally used as main and backup protection respectively. The differential protection relay (SEL487E) has dedicated harmonic restraint function which blocks th... Transformer Differential and overcurrent schemes are traditionally used as main and backup protection respectively. The differential protection relay (SEL487E) has dedicated harmonic restraint function which blocks the relay tripping during the transformer magnetizing inrush conditions. However, the backup overcurrent relay (SEL751A) applied to the transformer protection does not have harmonic restraint element and trip the overcurrent relay during the inrush conditions. Therefore, major contribution of this research work is the developed harmonic blocking scheme for transformer which uses element (87HB) of the transformer differential relay (SEL487E) to send an IEC61850 GOOSE-based harmonic blocking signal to the backup overcurrent relay (SEL751A) to inhibit from tripping during the transformer magnetizing inrush current conditions. The simulation results proved that IEC61850 standard-based protection scheme is faster than the hardwired signals. Therefore, the speed and reliability of the transformer scheme are improved using the IEC61850 standard-based GOOSE applications. 展开更多
关键词 Transformer protection Overcurrent protection Digital protection scheme current differential protection Transformer magnetizing inrush current Harmonic blocking IEC 61850 GOOSE message
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部