In contrast to the conventional direct current railway electrification system(DC-RES),the medium voltage direct current(MVDC)-RES is considered promising for long-distance high-speed corridors.In the MVDC-RES,traction...In contrast to the conventional direct current railway electrification system(DC-RES),the medium voltage direct current(MVDC)-RES is considered promising for long-distance high-speed corridors.In the MVDC-RES,traction substations(TSSs)are placed much farther and train loads are much heavier than in the conventional DC-RES.Hence,the MVDC-RES brings a drastic change in catenary voltage,TSS spacing,and train loading,which affects rail potential and stray current.In this connection,this work performs some significant quantitative analysis of rail potential and stray current in the MVDC-RES environment.An MVDC simulation model is proposed and different grounding schemes are analyzed for a single-train and two TSSs scenario as well as for a multi-train multi-TSS scenario.According to the simulation and analysis,the maximum values of rail potential and stray current at MVDC-RES distances and the maximum safe distance between adjacent TSSs are determined.展开更多
Innovative advancement in power electronics is reshaping the conventional high-voltage transmission systems and has also opened a new paradigm for researchers to consider its benefits in the railway electrification sy...Innovative advancement in power electronics is reshaping the conventional high-voltage transmission systems and has also opened a new paradigm for researchers to consider its benefits in the railway electrification system(RES).In this regard,the medium-voltage direct current RES(MVDC-RES)is a key area of interest nowadays.In this paper,a secondary energy source(SES)consisting of renewable energies(REs)and energy storage systems(ESSs)is proposed to solve the issues of catenary voltage regulation,rail potential,and stray current in the MVDC-RES.Some of the major integration topologies of the SES are analyzed for MVDC-RES and the most effective one is proposed and implemented.The voltage at the point of connection(PoC)of the SES is used as a reference for controlling different operation modes of REs and ESSs.Moreover,feedforward control is used at the ESS converter to attain the quick response from the batteries for the desired operation.The proposed scheme improves the catenary voltage,and reduces the rail potential and stray current.Besides,the scheme provides higher energy density and reduces line losses.Simulation results are provided to validate the operation modes and advantages of the proposed scheme.展开更多
文摘In contrast to the conventional direct current railway electrification system(DC-RES),the medium voltage direct current(MVDC)-RES is considered promising for long-distance high-speed corridors.In the MVDC-RES,traction substations(TSSs)are placed much farther and train loads are much heavier than in the conventional DC-RES.Hence,the MVDC-RES brings a drastic change in catenary voltage,TSS spacing,and train loading,which affects rail potential and stray current.In this connection,this work performs some significant quantitative analysis of rail potential and stray current in the MVDC-RES environment.An MVDC simulation model is proposed and different grounding schemes are analyzed for a single-train and two TSSs scenario as well as for a multi-train multi-TSS scenario.According to the simulation and analysis,the maximum values of rail potential and stray current at MVDC-RES distances and the maximum safe distance between adjacent TSSs are determined.
文摘Innovative advancement in power electronics is reshaping the conventional high-voltage transmission systems and has also opened a new paradigm for researchers to consider its benefits in the railway electrification system(RES).In this regard,the medium-voltage direct current RES(MVDC-RES)is a key area of interest nowadays.In this paper,a secondary energy source(SES)consisting of renewable energies(REs)and energy storage systems(ESSs)is proposed to solve the issues of catenary voltage regulation,rail potential,and stray current in the MVDC-RES.Some of the major integration topologies of the SES are analyzed for MVDC-RES and the most effective one is proposed and implemented.The voltage at the point of connection(PoC)of the SES is used as a reference for controlling different operation modes of REs and ESSs.Moreover,feedforward control is used at the ESS converter to attain the quick response from the batteries for the desired operation.The proposed scheme improves the catenary voltage,and reduces the rail potential and stray current.Besides,the scheme provides higher energy density and reduces line losses.Simulation results are provided to validate the operation modes and advantages of the proposed scheme.