To investigate the dynamics of submersible mussel rafts, the finite element program Aqua-FETM, developed by the University of New Hampshire(UNH), was applied to rafts moored at the surface and submerged. The submerg...To investigate the dynamics of submersible mussel rafts, the finite element program Aqua-FETM, developed by the University of New Hampshire(UNH), was applied to rafts moored at the surface and submerged. The submerged configuration is used to reduce wave forcing and to avoid contact with floating ice during winters in northern waters. Each raft consists of three pontoons connected by a grid framework. Rafts are intended to support densely spaced mussel ropes hung from the framework. When submerged, the pontoons are flooded, and the raft is held vertically by floats attached by lines. The computer models were developed in Aqua-FE? to simulate the effects of waves and current. They were validated by comparison with wave tank results by use of a 1/10 scale raft physical model. Comparisons showed good agreement for the important heave(vertical) and pitch(rotational) motions, though there was a tendency towards conservative results for wave and current drag. Full-scale simulations of surface and submerged single raft and two rafts connected in tandem were performed. Submerged raft wave response was found to be reduced relative to that at the surface for both the single and two-raft configurations. In particular, the vertical motion of mussel rope connection points was significantly reduced by submergence, resulting in reduced potential for mussel drop-off. For example, the maximum vertical velocities of mussel rope attachment points in the submerged two raft case were 7%-20% of the corresponding velocities when at the surface.展开更多
In this paper, we study the effect of the drain current on terahertz detection for Si metal-oxide semiconductor fieldeffect transistors(MOSFETs) both theoretically and experimentally. The analytical model, which is ...In this paper, we study the effect of the drain current on terahertz detection for Si metal-oxide semiconductor fieldeffect transistors(MOSFETs) both theoretically and experimentally. The analytical model, which is based on the smallsignal equivalent circuit of MOSFETs, predicts the significant improvement of the voltage responsivity Rv with the bias current. The experiment on antennas integrated with MOSFETs agrees with the analytical model, but the Rv improvement is accompanied first by a decrease, then an increase of the low-noise equivalent power(NEP) with the applied current. We determine the tradeoff between the low-NEP and high-Rv for the current-biased detectors. As the best-case scenario, we obtained an improvement of about six times in Rv without the cost of a higher NEP. We conclude that the current supply scheme can provide high-quality signal amplification in practical CMOS terahertz detection.展开更多
In this study,a 2kHz Tonpilz projector was designed using a Terfenol-D and modeled in ATILA.For the purpose of modeling studies,it has been determined that a radiating head mass exhibits better transmitting current re...In this study,a 2kHz Tonpilz projector was designed using a Terfenol-D and modeled in ATILA.For the purpose of modeling studies,it has been determined that a radiating head mass exhibits better transmitting current response(TCR) at 136 mm diameter,where the resonance occurs at 2.4kHz and the peak value of 118 dB re 1 μPa/A at 1 m occurs at 12 kHz.Also bolt at a 46mm distance from the center of the head mass offers resonance at 2.4kHz,and the peak value of 115.3 dB re 1 μPa/A at 1m occurs at 11.5kHz.This optimized design is fabricated and molded with polyurethane of 3mm thickness.The prototype was tested at the Acoustic Test Facility(ATF) of National Institute of Ocean Technology(NIOT) for its underwater performances.Based on the result,the fundamental resonance was determined to be 2.18kHz and the peak value of TCR of 182 dB re 1 μPa/A at 1m occurs at 14 kHz.The maximum value of the RS was found to be -190 dB re 1V/μPa at 1m at a frequency of 2.1kHz.展开更多
A theoretical model for enzyme entrapped conducting polymer modified electrodes is proposed and appropriate expressions are derived for the steady state current response of the enzyme electrode. More attention has ...A theoretical model for enzyme entrapped conducting polymer modified electrodes is proposed and appropriate expressions are derived for the steady state current response of the enzyme electrode. More attention has been paid to the role of conducting polymer in electron transfer and the effect of mass transport. On the basis of kinetic analysis, the performance and optimum design of the second and third generation enzyme electrodes are discussed.展开更多
This paper proposes a novel multi-pulse flexible-topology thyristor rectifier(FTTR) that can operate over a large voltage range while maintaining a low total harmonic distortion(THD) in the input current.The proposed ...This paper proposes a novel multi-pulse flexible-topology thyristor rectifier(FTTR) that can operate over a large voltage range while maintaining a low total harmonic distortion(THD) in the input current.The proposed multi-pulse FTTR has two operating modes:parallel mode and series mode.Irrespective of the mode in which it operates,the multi-pulse FTTR maintains the same pulses in the load current.To mitigate the harmonic injection into the AC mains,the topology-switching mechanism is then proposed.In addition,predictive current control is employed to achieve fast current response in both the transience and the transitions between modes.To verify the effectiveness of the multi-pulse FTTR as well as the control scheme,performance analysis based on an 18-pulse FTTR is investigated in detail,including fault tolerance evaluation,current THD analysis based on IEEE standard,and potential applications.Finally,a simulation model and the corresponding laboratory setup are developed.The results from both simulation and experiments demonstrate the feasibility of the proposed multi-pulse FTTR as well as the control scheme.展开更多
The influences of hydrophobic SiO_2 nanoparticles and the contents of glucose oxidase(GOD) upon the response current of enzyme electrode have been investigated by using the sol-gel method,in which polyvinylbutyryl(PVB...The influences of hydrophobic SiO_2 nanoparticles and the contents of glucose oxidase(GOD) upon the response current of enzyme electrode have been investigated by using the sol-gel method,in which polyvinylbutyryl(PVB)was used as a matrix.The influenoe of enzymatic activity was measured by electrochemical method.Experimental data demonstrated that hydrophobic SiO_2 particles can immobilize enzyme well,providing a good and simple method for preparing high quality GOD biosensor.The mechanism has been discussed.展开更多
基金financially supported by the Small Business Innovation Research(SBIR)program of the USDA National Institute for Food and Agriculture(NIFA)(Grant No.2013-33610-21190)to Pemaquid Mussel FarmsDuring her time at the University of New Hampshire where this study was completedsupported by a graduate student fellowship funded by the People’s Republic of China
文摘To investigate the dynamics of submersible mussel rafts, the finite element program Aqua-FETM, developed by the University of New Hampshire(UNH), was applied to rafts moored at the surface and submerged. The submerged configuration is used to reduce wave forcing and to avoid contact with floating ice during winters in northern waters. Each raft consists of three pontoons connected by a grid framework. Rafts are intended to support densely spaced mussel ropes hung from the framework. When submerged, the pontoons are flooded, and the raft is held vertically by floats attached by lines. The computer models were developed in Aqua-FE? to simulate the effects of waves and current. They were validated by comparison with wave tank results by use of a 1/10 scale raft physical model. Comparisons showed good agreement for the important heave(vertical) and pitch(rotational) motions, though there was a tendency towards conservative results for wave and current drag. Full-scale simulations of surface and submerged single raft and two rafts connected in tandem were performed. Submerged raft wave response was found to be reduced relative to that at the surface for both the single and two-raft configurations. In particular, the vertical motion of mussel rope connection points was significantly reduced by submergence, resulting in reduced potential for mussel drop-off. For example, the maximum vertical velocities of mussel rope attachment points in the submerged two raft case were 7%-20% of the corresponding velocities when at the surface.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFB-0402403)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20141321)+1 种基金CAST Project,China(Grant No.08201601)the National Science Foundation for Young Scholars of China(Grant No.61404072)
文摘In this paper, we study the effect of the drain current on terahertz detection for Si metal-oxide semiconductor fieldeffect transistors(MOSFETs) both theoretically and experimentally. The analytical model, which is based on the smallsignal equivalent circuit of MOSFETs, predicts the significant improvement of the voltage responsivity Rv with the bias current. The experiment on antennas integrated with MOSFETs agrees with the analytical model, but the Rv improvement is accompanied first by a decrease, then an increase of the low-noise equivalent power(NEP) with the applied current. We determine the tradeoff between the low-NEP and high-Rv for the current-biased detectors. As the best-case scenario, we obtained an improvement of about six times in Rv without the cost of a higher NEP. We conclude that the current supply scheme can provide high-quality signal amplification in practical CMOS terahertz detection.
文摘In this study,a 2kHz Tonpilz projector was designed using a Terfenol-D and modeled in ATILA.For the purpose of modeling studies,it has been determined that a radiating head mass exhibits better transmitting current response(TCR) at 136 mm diameter,where the resonance occurs at 2.4kHz and the peak value of 118 dB re 1 μPa/A at 1 m occurs at 12 kHz.Also bolt at a 46mm distance from the center of the head mass offers resonance at 2.4kHz,and the peak value of 115.3 dB re 1 μPa/A at 1m occurs at 11.5kHz.This optimized design is fabricated and molded with polyurethane of 3mm thickness.The prototype was tested at the Acoustic Test Facility(ATF) of National Institute of Ocean Technology(NIOT) for its underwater performances.Based on the result,the fundamental resonance was determined to be 2.18kHz and the peak value of TCR of 182 dB re 1 μPa/A at 1m occurs at 14 kHz.The maximum value of the RS was found to be -190 dB re 1V/μPa at 1m at a frequency of 2.1kHz.
文摘A theoretical model for enzyme entrapped conducting polymer modified electrodes is proposed and appropriate expressions are derived for the steady state current response of the enzyme electrode. More attention has been paid to the role of conducting polymer in electron transfer and the effect of mass transport. On the basis of kinetic analysis, the performance and optimum design of the second and third generation enzyme electrodes are discussed.
基金Project supported by the National Natural Science Foundation of China (No. 51177148)the Zhejiang Key Science and Technology Innovation Group Program,China (No. 2010R50021)
文摘This paper proposes a novel multi-pulse flexible-topology thyristor rectifier(FTTR) that can operate over a large voltage range while maintaining a low total harmonic distortion(THD) in the input current.The proposed multi-pulse FTTR has two operating modes:parallel mode and series mode.Irrespective of the mode in which it operates,the multi-pulse FTTR maintains the same pulses in the load current.To mitigate the harmonic injection into the AC mains,the topology-switching mechanism is then proposed.In addition,predictive current control is employed to achieve fast current response in both the transience and the transitions between modes.To verify the effectiveness of the multi-pulse FTTR as well as the control scheme,performance analysis based on an 18-pulse FTTR is investigated in detail,including fault tolerance evaluation,current THD analysis based on IEEE standard,and potential applications.Finally,a simulation model and the corresponding laboratory setup are developed.The results from both simulation and experiments demonstrate the feasibility of the proposed multi-pulse FTTR as well as the control scheme.
文摘The influences of hydrophobic SiO_2 nanoparticles and the contents of glucose oxidase(GOD) upon the response current of enzyme electrode have been investigated by using the sol-gel method,in which polyvinylbutyryl(PVB)was used as a matrix.The influenoe of enzymatic activity was measured by electrochemical method.Experimental data demonstrated that hydrophobic SiO_2 particles can immobilize enzyme well,providing a good and simple method for preparing high quality GOD biosensor.The mechanism has been discussed.