Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used t...Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.展开更多
A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditi...A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditional current-source inverter, the power frequency inductors and power frequency transformer are replaced with high frequency inductors and a high frequency transformer. Thus, the proposed inverter has advantages of small volume, low cost, low total harmonic distortion (THD), low power losses, high power factor (PF) and simple control. Furthermore, grid voltage cannot influence output current of the grid-connected inverter and the current-source inverter with a high PF that approaches one has been realized. Finally, validity of the theory analysis and feasibility of the control scheme are shown by simulation and experimental results.展开更多
The paper proposes a Current Source Multilevel Inverter (CSMLI) with single rating inductor topology. Multilevel inverters are most familiar with power converter’s applications due to reduced dv/dt, di/dt stress, and...The paper proposes a Current Source Multilevel Inverter (CSMLI) with single rating inductor topology. Multilevel inverters are most familiar with power converter’s applications due to reduced dv/dt, di/dt stress, and very efficient for reducing harmonic distortion in the output voltage and output current. The proposed nine-level current source inverter has been tested under symmetrical and asymmetrical modes of operation, and their activities are compared using PI and Fuzzy PI (Proportional Integral) controllers with multicarrier PWM (Pulse Width Modulation) strategy. MATLAB/Simulink simulation has been made for the proposed converter to obtain its performance measures. Some experimental results are given to verify the presented Current Source Multilevel Inverter.展开更多
In recent years, Z-source inverters (ZSI) have been proposed as an replacement power conversion concept which it has both voltage buck and boost abilities. In addition, ZSI doesn’t require dead-time to protection sho...In recent years, Z-source inverters (ZSI) have been proposed as an replacement power conversion concept which it has both voltage buck and boost abilities. In addition, ZSI doesn’t require dead-time to protection short circuit at two switches any of the same phase leg in the inverter bridge and to achieve optimal harmonic of current, voltage. This paper presents two different control methods (CM) for ZSI. The aim of this study to compare between two modulation methods, there are modi?ed space vector pulse width modulation method (MSVM) and the simple boost control (SBC) about the unique harmonic performance features, the total average and peak switching device power of the inverter system. In addition, this paper also analyzes about the ability exceed modulation index in linear region of two CM using MATLAB/Simulink.展开更多
This paper presents a simple approach of a topology already known in the literature, applied in active power transfer from direct current source to any alternating current voltage source, whether the utility power or ...This paper presents a simple approach of a topology already known in the literature, applied in active power transfer from direct current source to any alternating current voltage source, whether the utility power or a voltage inverter that is forming an isolated AC grid. The photovoltaic inverter works as current controlled voltage source inverter that provides a sinusoidal current to the AC grid. The inverter is insulated from the grid by a transformer. The system is discussed and modeled. Simulation results of this application are presented and experimental results validate this topology.展开更多
多载波PWM技术大多应用在电压型多电平变流器中,而将其应用于电流型多电平变流器中也具有良好的消谐波性能。本文介绍一种多载波PWM技术——载波位置相反分布(Phase Opposition Disposition,POD)PWM在三相分相控制式五电平电流型逆变器(...多载波PWM技术大多应用在电压型多电平变流器中,而将其应用于电流型多电平变流器中也具有良好的消谐波性能。本文介绍一种多载波PWM技术——载波位置相反分布(Phase Opposition Disposition,POD)PWM在三相分相控制式五电平电流型逆变器(Current Source Inverter,CSI)中的应用原理,提出了PODPWM技术数字化实现方案。最后给出了该三相分相控制式五电平CSI系统的实验结果。展开更多
Current source inverter(CSI)is a class of power electronic converters that,thanks to the inherent boost capability and ease of control,is investigated for grid-tied photovoltaic power conversion applications.Tradition...Current source inverter(CSI)is a class of power electronic converters that,thanks to the inherent boost capability and ease of control,is investigated for grid-tied photovoltaic power conversion applications.Traditional CSI and CSI7 topologies are here analyzed and compared with two kind of space vector modulation strategies mainly in terms of ground leakage current both in simulations and experiments.Furthermore,THD of the injected grid current and the computation of conduction and switching semiconductor power losses are also carried out in numerical simulations.The topology comparison is carried out with the use of a different number of PV modules,to analyze the robustness of the topologies to different size of the PV strings.Simulation and experimental results show that the CSI7 topology,with respect to conventional CSI,allows to strongly reduce ground leakage current,phase current THD and semicondutor power losses,at the price of an additional power device.展开更多
针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用...针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。展开更多
This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect m...This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six-switch voltage source converter replaced by a nine-switch configuration followed by the current source inverter (CSI). Matrix electric power conversion topologies and their switch functions are flexible and are used for specific applications. With the additional three switches, the proposed DIMC can provide six input terminals, which make it possible to integrate two independent AC sources from two independent wind turbines into a single grid tied power electronics interface. Commanded currents can be extracted from the two input sources to the grid. The proposed PI control and modulation schemes guaranteed sinusoidal input and output waveforms as well as reduced THD. The simulation results are provided to validate the effectiveness of the proposed control and modulation schemes for the proposed converter.展开更多
The main objective of this paper is to reduce the total harmonics in a single phase voltage source inverter using Artificial Bee Colony (ABC) optimization technique for critical load applications. Single phase inverte...The main objective of this paper is to reduce the total harmonics in a single phase voltage source inverter using Artificial Bee Colony (ABC) optimization technique for critical load applications. Single phase inverter is a non-linear load using power electronic components causing distortions in the load voltage and current wave patterns from the sinusoidal waveforms due to harmonics. The mapping state space model for a full bridge voltage source inverter was developed using output load resistance. An optimal ABC technique has been designed and optimized values are estimated using a full bridge voltage controlled inverter using Proportional Integral Algorithm. The MATLAB/SIMULINK tool and Experimental setup were implemented and their THD values were estimated. Also this ABC scheme is compared with the previous results such as PI Algorithm, Fuzzy logic controller and Neuro-fuzzy controllers. From the simulation and experimental results using ABC algorithm, it is observed that the total harmonics are mitigated considerably compared to previous results with respect to the power quality standards such as IEEE-519 and IEC 61000.展开更多
Renewable energy has become important for electricity generation because of the high air pollution associated with conventional fossil-based energy systems.Conventional fossil-based power plants are gradually transiti...Renewable energy has become important for electricity generation because of the high air pollution associated with conventional fossil-based energy systems.Conventional fossil-based power plants are gradually transitioning by incorporating renewable energy sources,such as photovoltaic(PV)cells.In a PV system,an inverter converts DC power from solar panels to AC power required to serve common electrical loads.A conventional H-bridge inverter topology has several disadvantages,such as the voltage being not sinusoidal,switching the DC voltage and high common-mode voltage.The common-mode voltage can cause a large leaked capacitive current,which can result in undesirable operation in solar power applications.A common solution to this problem is the addition of a large filter to the input or output of an inverter.An inherent sinusoidal voltage source inverter based on a modified Cuk converter as its basic cell,which simultaneously generates a sinusoidal output voltage and a lower common-mode voltage,is proposed.The proposed topology does not require additional input or output filters.Analytical expressions are derived to confirm the operation of the proposed topology.Simulation results confirm the mathematical analysis.A laboratory-scale experiment is performed to verify the proposed inverter.展开更多
文摘Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.T0103)
文摘A novel topology of the current-source grid-connected inverter is proposed based on the immittance converter theory. A control strategy of sine-sine pulse width modulation (PWM) is studied. Compared with the traditional current-source inverter, the power frequency inductors and power frequency transformer are replaced with high frequency inductors and a high frequency transformer. Thus, the proposed inverter has advantages of small volume, low cost, low total harmonic distortion (THD), low power losses, high power factor (PF) and simple control. Furthermore, grid voltage cannot influence output current of the grid-connected inverter and the current-source inverter with a high PF that approaches one has been realized. Finally, validity of the theory analysis and feasibility of the control scheme are shown by simulation and experimental results.
文摘The paper proposes a Current Source Multilevel Inverter (CSMLI) with single rating inductor topology. Multilevel inverters are most familiar with power converter’s applications due to reduced dv/dt, di/dt stress, and very efficient for reducing harmonic distortion in the output voltage and output current. The proposed nine-level current source inverter has been tested under symmetrical and asymmetrical modes of operation, and their activities are compared using PI and Fuzzy PI (Proportional Integral) controllers with multicarrier PWM (Pulse Width Modulation) strategy. MATLAB/Simulink simulation has been made for the proposed converter to obtain its performance measures. Some experimental results are given to verify the presented Current Source Multilevel Inverter.
文摘In recent years, Z-source inverters (ZSI) have been proposed as an replacement power conversion concept which it has both voltage buck and boost abilities. In addition, ZSI doesn’t require dead-time to protection short circuit at two switches any of the same phase leg in the inverter bridge and to achieve optimal harmonic of current, voltage. This paper presents two different control methods (CM) for ZSI. The aim of this study to compare between two modulation methods, there are modi?ed space vector pulse width modulation method (MSVM) and the simple boost control (SBC) about the unique harmonic performance features, the total average and peak switching device power of the inverter system. In addition, this paper also analyzes about the ability exceed modulation index in linear region of two CM using MATLAB/Simulink.
文摘This paper presents a simple approach of a topology already known in the literature, applied in active power transfer from direct current source to any alternating current voltage source, whether the utility power or a voltage inverter that is forming an isolated AC grid. The photovoltaic inverter works as current controlled voltage source inverter that provides a sinusoidal current to the AC grid. The inverter is insulated from the grid by a transformer. The system is discussed and modeled. Simulation results of this application are presented and experimental results validate this topology.
文摘多载波PWM技术大多应用在电压型多电平变流器中,而将其应用于电流型多电平变流器中也具有良好的消谐波性能。本文介绍一种多载波PWM技术——载波位置相反分布(Phase Opposition Disposition,POD)PWM在三相分相控制式五电平电流型逆变器(Current Source Inverter,CSI)中的应用原理,提出了PODPWM技术数字化实现方案。最后给出了该三相分相控制式五电平CSI系统的实验结果。
基金Supported by the Ningbo Science&Technology Beauro(2017D10031,2018A-08-C)(3315 Innovation Team).
文摘Current source inverter(CSI)is a class of power electronic converters that,thanks to the inherent boost capability and ease of control,is investigated for grid-tied photovoltaic power conversion applications.Traditional CSI and CSI7 topologies are here analyzed and compared with two kind of space vector modulation strategies mainly in terms of ground leakage current both in simulations and experiments.Furthermore,THD of the injected grid current and the computation of conduction and switching semiconductor power losses are also carried out in numerical simulations.The topology comparison is carried out with the use of a different number of PV modules,to analyze the robustness of the topologies to different size of the PV strings.Simulation and experimental results show that the CSI7 topology,with respect to conventional CSI,allows to strongly reduce ground leakage current,phase current THD and semicondutor power losses,at the price of an additional power device.
文摘针对传统电压源逆变器无模型预测电流控制(model-free predictive current control,MFPCC)方法存在电流纹波大、电流梯度更新停滞以及预测性能易受采样扰动影响的问题。该文提出一种计及采样扰动的三矢量MFPCC方法。在一个控制周期应用3个基本矢量,并根据价值函数计算矢量作用时间,降低了输出电流纹波;其次,通过建立不同矢量作用下的电流梯度方程组,实现电流梯度数据的实时更新,消除了停滞现象;再次,分析采样扰动对MFPCC的影响,采用扩张状态观测器估计采样扰动以补偿预测电流控制,抑制其对输出电流的影响。最后,通过仿真和实验,对所提方法的有效性进行了验证。
文摘This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six-switch voltage source converter replaced by a nine-switch configuration followed by the current source inverter (CSI). Matrix electric power conversion topologies and their switch functions are flexible and are used for specific applications. With the additional three switches, the proposed DIMC can provide six input terminals, which make it possible to integrate two independent AC sources from two independent wind turbines into a single grid tied power electronics interface. Commanded currents can be extracted from the two input sources to the grid. The proposed PI control and modulation schemes guaranteed sinusoidal input and output waveforms as well as reduced THD. The simulation results are provided to validate the effectiveness of the proposed control and modulation schemes for the proposed converter.
文摘The main objective of this paper is to reduce the total harmonics in a single phase voltage source inverter using Artificial Bee Colony (ABC) optimization technique for critical load applications. Single phase inverter is a non-linear load using power electronic components causing distortions in the load voltage and current wave patterns from the sinusoidal waveforms due to harmonics. The mapping state space model for a full bridge voltage source inverter was developed using output load resistance. An optimal ABC technique has been designed and optimized values are estimated using a full bridge voltage controlled inverter using Proportional Integral Algorithm. The MATLAB/SIMULINK tool and Experimental setup were implemented and their THD values were estimated. Also this ABC scheme is compared with the previous results such as PI Algorithm, Fuzzy logic controller and Neuro-fuzzy controllers. From the simulation and experimental results using ABC algorithm, it is observed that the total harmonics are mitigated considerably compared to previous results with respect to the power quality standards such as IEEE-519 and IEC 61000.
基金Supported by Institut Teknologi Bandung(Grant No.223/IT1.B07.1/TA.00/2022)。
文摘Renewable energy has become important for electricity generation because of the high air pollution associated with conventional fossil-based energy systems.Conventional fossil-based power plants are gradually transitioning by incorporating renewable energy sources,such as photovoltaic(PV)cells.In a PV system,an inverter converts DC power from solar panels to AC power required to serve common electrical loads.A conventional H-bridge inverter topology has several disadvantages,such as the voltage being not sinusoidal,switching the DC voltage and high common-mode voltage.The common-mode voltage can cause a large leaked capacitive current,which can result in undesirable operation in solar power applications.A common solution to this problem is the addition of a large filter to the input or output of an inverter.An inherent sinusoidal voltage source inverter based on a modified Cuk converter as its basic cell,which simultaneously generates a sinusoidal output voltage and a lower common-mode voltage,is proposed.The proposed topology does not require additional input or output filters.Analytical expressions are derived to confirm the operation of the proposed topology.Simulation results confirm the mathematical analysis.A laboratory-scale experiment is performed to verify the proposed inverter.