Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flak...Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.展开更多
Current-carrying coils are basic elements in electromagnetic equipments, for example, in high field magnets from high temperature superconducting wires or tapes. In the assembly of these systems and their current-carr...Current-carrying coils are basic elements in electromagnetic equipments, for example, in high field magnets from high temperature superconducting wires or tapes. In the assembly of these systems and their current-carrying operation, unavoidable mis- alignment and shift from the original position can be induced by disturbances such as the imbalance of magnetic force due to safety problems. For two current-carrying coils with non-coplanar axes, the analytic expression of the magnetic force between the two coils is presented according to the rule of Ampere circulation and the Biot-Savart law. Based on the expression, the dependence of the magnetic force on the size and the relative position of each other is further investigated, and the variation of the magnetic force is obtained with the above parameters.展开更多
Current-carrying sliding is widely applied in aerospace equipment,but it is limited by the poor lubricity of the present materials and the unclear tribological mechanism.This study demonstrated the potential of MoS_(2...Current-carrying sliding is widely applied in aerospace equipment,but it is limited by the poor lubricity of the present materials and the unclear tribological mechanism.This study demonstrated the potential of MoS_(2)-based materials with excellent lubricity as space sliding electrical contact materials by doping Ti to improve its conductivity.The tribological behavior of MoS_(2)-Ti films under current-carrying sliding in vacuum was studied by establishing a simulation evaluating device.Moreover,the noncurrent-carrying sliding and static current-carrying experiments in vacuum were carried out for comparison to understand the tribological mechanism.In addition to mechanical wear,the current-induced arc erosion and thermal effect take important roles in accelerating the wear.Arc erosion is caused by the accumulation of electric charge,which is related to the conductivity of the film.While the current-thermal effect softens the film,causing strong adhesive wear,and good conductivity and the large contact area are beneficial for minimizing the thermal effect.So the moderate hardness and good conductivity of MoS_(2)-Ti film contribute to its excellent current-carrying tribological behavior in vacuum,showing a significant advantage compared with the traditional ones.展开更多
A novel method for calculating the magnetic stiffness matrix was proposed for the numerical analysis of the magneto-elastic stability of complicated current-carrying structures aim- ing for application in the magneto-...A novel method for calculating the magnetic stiffness matrix was proposed for the numerical analysis of the magneto-elastic stability of complicated current-carrying structures aim- ing for application in the magneto-elastic behavior of the tokamak system. A code based on the proposed method was developed and applied to the numerical analysis of two typical current- carrying structures. The good consistency of the numerical and analytical results validated the proposed method and the related numerical code.展开更多
It is commonly assumed that a wire conducting an electric current is neutral in the laboratory frame of reference (the rest frame of the lattice of positive ions). Some authors consider that the wire is neutral only i...It is commonly assumed that a wire conducting an electric current is neutral in the laboratory frame of reference (the rest frame of the lattice of positive ions). Some authors consider that the wire is neutral only in a symmetrical frame of reference, in which the velocities of electrons and protons have equal norm and opposite direction. In this paper, we discuss the Lorentz transformation between different frames of reference in the context of the special theory of relativity for a current-carrying conducting wire and a probe charge in motion with respect to the wire. A simple derivation of the Lorentz force in the laboratory frame of reference for the assumed neutrality in a symmetrical frame of reference is presented. We show that the Lorentz force calculated assuming neutrality in the symmetrical frame of reference and the one assuming neutrality in the laboratory frame of reference differ by a term corresponding to a change in the test charge speed of one half the drift velocity of the electrons.展开更多
Many current-carrying contact pairs, such as those found in pantograph-catenary systems, operate in open environments and are susceptible to significant external interference from temperature and humidity variations. ...Many current-carrying contact pairs, such as those found in pantograph-catenary systems, operate in open environments and are susceptible to significant external interference from temperature and humidity variations. This study investigated the evolution of the friction coefficient and contact resistance of C/Cu contact pairs under alternating temperature, humidity, and current conditions. Through experimentation, the wear rate and microtopography of the worn surface were analyzed under various constant parameters. Subsequently, the differences in tribological behavior and current-carrying characteristics of the contact pairs under these three parameters were explored. The results revealed that the decrease in temperature resulted in a significant increase in the friction coefficient of the contact pairs, carbon wear, and copper surface roughness. Additionally, the surface oxidation rate was lower at lower temperatures. Moreover, contact resistance did not consistently increase with decreasing temperature, owing to the combined action of the contact area and the oxide film. Compared with temperature, humidity fluctuations at room temperature exerted less influence on the friction coefficient and contact resistance of the contact pairs. Dry environments rendered carbon materials vulnerable to oxidation and cracking, while excessive humidity fostered abrasive wear and arcing. High-current conditions generally degraded the tribological properties of C/Cu contacts. In the absence of current, the friction coefficient was extremely high, and the copper transfer was high. Under excessive current, copper was susceptible to plowing by carbon micro-bumps and abrasive particles, resulting in a decrease in the friction coefficient. The release of lipids from the carbon surface due to temperature elevation weakened the electrical contact performance and increased the occurrence of arc erosion, thereby exacerbating carbon wear.展开更多
In this work,we proposed a method for coating the whole surfaces of bearing balls uniformly by carbon film with a rotatable ball clamp.We studied the carbon/carbon friction with a self-designed currentcarrying ball be...In this work,we proposed a method for coating the whole surfaces of bearing balls uniformly by carbon film with a rotatable ball clamp.We studied the carbon/carbon friction with a self-designed currentcarrying ball bearing friction test system.A notable and instant friction force drop of 28%and significant carbon film wear alleviation were found when currents were applied.By using TEM-,SEM-,and EDS-analysis,special carbon stacks with a mixture of large wear particles and oxide were found in the wear areas under current applied condition.We elucidated the current-carrying friction mechanisms as follows:(1)wear particles formation;(2)wear particles charged by tribomicroplasma;(3)formation of surface passivated carbon stacks under electric force;(4)sliding between passivated carbon surfaces.This work may facilitate the development of novel solid-lubricated ball bearings and lay some foundations for current-carrying rolling friction.展开更多
This study demonstrates that magnetron-sputtered NbSe_(2)film can be used as a lubricant for space current-carrying sliding contact,which accommodates both metal-like conductivity and MoS_(2)-like lubricity.Deposition...This study demonstrates that magnetron-sputtered NbSe_(2)film can be used as a lubricant for space current-carrying sliding contact,which accommodates both metal-like conductivity and MoS_(2)-like lubricity.Deposition at low pressure and low energy is performed to avoid the generation of the interference phase of NbSe_(3).The composition,microstructure,and properties of the NbSe_(2)films are further tailored by controlling the sputtering current.At an appropriate current,the film changed from amorphous to crystalline,maintained a dense structure,and exhibited excellent comprehensive properties.Compared to the currently available electrical contact lubricating materials,the NbSe_(2)film exhibits a significant advantage under the combined vacuum and current-carrying conditions.The friction coefficient decreases from 0.25 to 0.02,the wear life increases more than seven times,and the electric noise reduces approximately 50%.展开更多
A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam. formed by an array of square current-carrying wires, is proposed. We calculate the spatial distributions of the m...A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam. formed by an array of square current-carrying wires, is proposed. We calculate the spatial distributions of the magnetic fields from the array of current-carrying wires and the magnetic focusing potential for cold rubidium atoms, and study the dynamic focusing processes of cold atoms passing through the mag- netic micro-lens array and its focusing properties by using Monte-Carlo simulations and trajectory tracing method. The result shows that the proposed micro-lens array can be used to focus effectively a cold atomic beam, even to load ultracold atoms or a BEC sample into a 2D optical lattice formed by blue detuned hollow beams.展开更多
An ionic liquid-polyaniline/tungsten disulfide(IL-PANI/WS_(2))composite was synthesized in 1-butyl-3-methylimidazole tetrafluoroborate(LB104)aqueous solution by in-situ polymerization and characterized by Fourier tran...An ionic liquid-polyaniline/tungsten disulfide(IL-PANI/WS_(2))composite was synthesized in 1-butyl-3-methylimidazole tetrafluoroborate(LB104)aqueous solution by in-situ polymerization and characterized by Fourier transform infrared spectroscopy.A current-carrying friction and wear tester was used to study the tribological properties of steel-steel and copper-copper friction pairs lubricated by an IL-PANI/WS_(2) lithium complex grease(LCG).After the experiment,scanning electron microscope was used to observe the surface morphology of the wear scar on the steel and copper plates,and X-ray photoelectron spectrometer was used to analyze the elemental composition of the wear scar surface.The results show that compared with greases containing IL-PANI and WS_(2),greases containing IL-PANI/WS_(2) exhibit better antiwear performance when lubricating steel-steel friction pairs and better tribological performance and electrical conductivity when lubricating copper-copper friction pairs.Therefore,it can be concluded that WS_(2) and IL-PANI have a synergistic effect.展开更多
Using special testers,the triboelectric behaviors of several materials were investigated in this paper under the conditions of high speeds and large currents.The obtained results revealed that the tribological behavio...Using special testers,the triboelectric behaviors of several materials were investigated in this paper under the conditions of high speeds and large currents.The obtained results revealed that the tribological behaviors and current-conducting characteristics have complicated interrelationships.Worsening in the servicing conditions can obviously deteriorate the tribological as well as electrical behaviors;high sliding speeds and large electrical currents can worsen the tribological and electrical conductivity properties,while an appropriate contact pressure can benefit the electrical contact properties.Further analyses reveal that the worsening effects of the above factors,such as frictional heat,arc discharge,arc heat,and surface morphology,result in poor triboelectric contact performance.Among these,the electric arc is one of the most serious factors,because the occurrence of an electric arc may cause severe oxidation,melting,and roughening of the contact surface,thereby causing deterioration in the current-conducting quality as well as material loss.展开更多
This study presents observation and detailed analysis on the double layers (DLs) in the ramp and the foreshock contacting with the foot of the terrestrial bow shock by THEMIS on September 14, 2008 under enhanced dyn...This study presents observation and detailed analysis on the double layers (DLs) in the ramp and the foreshock contacting with the foot of the terrestrial bow shock by THEMIS on September 14, 2008 under enhanced dynamic pressure in the solar wind. The results reveal that: (1) The time duration of the double layers is nus 10-40 mV/m. (2) On assuming a propagation speed at the ion mainly 3-8 ms, and their max parallel electric field is miacoustic speed (vs), their spatial scale is estimated to be 0.3-1.15 km (about 75-200 2D). (3) The net potential drop of DLs is estimated to be 5-32 V. (4) The DLs in the ramp and the foreshock contacting to the foot of the bow shock is current-carrying as a result of development and evolution of nonlinear phase of instability in the self-consistent current-carrying plasma. The DLs may play an important role in strong turbulence in the foreshock contacting with the foot of the bow shock.展开更多
基金Projects(51772081,51837009,51971091)supported by the National Natural Science Foundation of ChinaProject(HFZL2018CXY003-4)supported by the Industry-University-Research Cooperation of AECC,ChinaProject(kq1902046)supported by the Major Science and Technology Projects of Changsha City,China。
文摘Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.
基金Project supported by the National Natural Science Foundation of China(No.11372096)the Program for Research Fund for the Doctoral Program of Higher Education of China
文摘Current-carrying coils are basic elements in electromagnetic equipments, for example, in high field magnets from high temperature superconducting wires or tapes. In the assembly of these systems and their current-carrying operation, unavoidable mis- alignment and shift from the original position can be induced by disturbances such as the imbalance of magnetic force due to safety problems. For two current-carrying coils with non-coplanar axes, the analytic expression of the magnetic force between the two coils is presented according to the rule of Ampere circulation and the Biot-Savart law. Based on the expression, the dependence of the magnetic force on the size and the relative position of each other is further investigated, and the variation of the magnetic force is obtained with the above parameters.
基金supported by the National Natural Science Foundation of China(Grant No.51775537)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.Y202084)。
文摘Current-carrying sliding is widely applied in aerospace equipment,but it is limited by the poor lubricity of the present materials and the unclear tribological mechanism.This study demonstrated the potential of MoS_(2)-based materials with excellent lubricity as space sliding electrical contact materials by doping Ti to improve its conductivity.The tribological behavior of MoS_(2)-Ti films under current-carrying sliding in vacuum was studied by establishing a simulation evaluating device.Moreover,the noncurrent-carrying sliding and static current-carrying experiments in vacuum were carried out for comparison to understand the tribological mechanism.In addition to mechanical wear,the current-induced arc erosion and thermal effect take important roles in accelerating the wear.Arc erosion is caused by the accumulation of electric charge,which is related to the conductivity of the film.While the current-thermal effect softens the film,causing strong adhesive wear,and good conductivity and the large contact area are beneficial for minimizing the thermal effect.So the moderate hardness and good conductivity of MoS_(2)-Ti film contribute to its excellent current-carrying tribological behavior in vacuum,showing a significant advantage compared with the traditional ones.
基金supported by National Magnetic Confinement Fusion Program of China (Nos. 2009GB104002, 2013GB113005)National Natural Science Foundation of China (Nos. 50977070, 51277139, 11021202)the National Basic Research Program of National China(No. 2011CB610303)
文摘A novel method for calculating the magnetic stiffness matrix was proposed for the numerical analysis of the magneto-elastic stability of complicated current-carrying structures aim- ing for application in the magneto-elastic behavior of the tokamak system. A code based on the proposed method was developed and applied to the numerical analysis of two typical current- carrying structures. The good consistency of the numerical and analytical results validated the proposed method and the related numerical code.
文摘It is commonly assumed that a wire conducting an electric current is neutral in the laboratory frame of reference (the rest frame of the lattice of positive ions). Some authors consider that the wire is neutral only in a symmetrical frame of reference, in which the velocities of electrons and protons have equal norm and opposite direction. In this paper, we discuss the Lorentz transformation between different frames of reference in the context of the special theory of relativity for a current-carrying conducting wire and a probe charge in motion with respect to the wire. A simple derivation of the Lorentz force in the laboratory frame of reference for the assumed neutrality in a symmetrical frame of reference is presented. We show that the Lorentz force calculated assuming neutrality in the symmetrical frame of reference and the one assuming neutrality in the laboratory frame of reference differ by a term corresponding to a change in the test charge speed of one half the drift velocity of the electrons.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52365022, 52375181)the Natural Science Foundation of Jiangxi Province (Grant No. 20224ACB204012)+1 种基金the Postgraduate Innovation Special Fund Project in Jiangxi Province (Grant No. YC2022-B177)the General Subject of State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure (Grant No.HJGZ2023208)。
文摘Many current-carrying contact pairs, such as those found in pantograph-catenary systems, operate in open environments and are susceptible to significant external interference from temperature and humidity variations. This study investigated the evolution of the friction coefficient and contact resistance of C/Cu contact pairs under alternating temperature, humidity, and current conditions. Through experimentation, the wear rate and microtopography of the worn surface were analyzed under various constant parameters. Subsequently, the differences in tribological behavior and current-carrying characteristics of the contact pairs under these three parameters were explored. The results revealed that the decrease in temperature resulted in a significant increase in the friction coefficient of the contact pairs, carbon wear, and copper surface roughness. Additionally, the surface oxidation rate was lower at lower temperatures. Moreover, contact resistance did not consistently increase with decreasing temperature, owing to the combined action of the contact area and the oxide film. Compared with temperature, humidity fluctuations at room temperature exerted less influence on the friction coefficient and contact resistance of the contact pairs. Dry environments rendered carbon materials vulnerable to oxidation and cracking, while excessive humidity fostered abrasive wear and arcing. High-current conditions generally degraded the tribological properties of C/Cu contacts. In the absence of current, the friction coefficient was extremely high, and the copper transfer was high. Under excessive current, copper was susceptible to plowing by carbon micro-bumps and abrasive particles, resulting in a decrease in the friction coefficient. The release of lipids from the carbon surface due to temperature elevation weakened the electrical contact performance and increased the occurrence of arc erosion, thereby exacerbating carbon wear.
基金The authors would like to thank the financial support of the National Natural Science Foundation of China(No.51975383).The authors would like to thank Dr.Nan Jian,Dr.Meijie Yin,Xi Zhang in the Electron Microscope Center(EMC)of Shenzhen University for the help in TEM,SEM,and EDS characterizations with double spherical aberration corrected transmission electron microscope.
文摘In this work,we proposed a method for coating the whole surfaces of bearing balls uniformly by carbon film with a rotatable ball clamp.We studied the carbon/carbon friction with a self-designed currentcarrying ball bearing friction test system.A notable and instant friction force drop of 28%and significant carbon film wear alleviation were found when currents were applied.By using TEM-,SEM-,and EDS-analysis,special carbon stacks with a mixture of large wear particles and oxide were found in the wear areas under current applied condition.We elucidated the current-carrying friction mechanisms as follows:(1)wear particles formation;(2)wear particles charged by tribomicroplasma;(3)formation of surface passivated carbon stacks under electric force;(4)sliding between passivated carbon surfaces.This work may facilitate the development of novel solid-lubricated ball bearings and lay some foundations for current-carrying rolling friction.
基金The authors are grateful to the National Natural Science Foundation of China(Grant No.51775537)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.Y202084)for financial support.
文摘This study demonstrates that magnetron-sputtered NbSe_(2)film can be used as a lubricant for space current-carrying sliding contact,which accommodates both metal-like conductivity and MoS_(2)-like lubricity.Deposition at low pressure and low energy is performed to avoid the generation of the interference phase of NbSe_(3).The composition,microstructure,and properties of the NbSe_(2)films are further tailored by controlling the sputtering current.At an appropriate current,the film changed from amorphous to crystalline,maintained a dense structure,and exhibited excellent comprehensive properties.Compared to the currently available electrical contact lubricating materials,the NbSe_(2)film exhibits a significant advantage under the combined vacuum and current-carrying conditions.The friction coefficient decreases from 0.25 to 0.02,the wear life increases more than seven times,and the electric noise reduces approximately 50%.
基金This work was supported by the National Natural Science Foundation of China (No.10174050, 10374029, and 10434060), the Shanghai Priority Academic Discipline,and the 211 Foundation of the Educational Ministry of China.
文摘A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam. formed by an array of square current-carrying wires, is proposed. We calculate the spatial distributions of the magnetic fields from the array of current-carrying wires and the magnetic focusing potential for cold rubidium atoms, and study the dynamic focusing processes of cold atoms passing through the mag- netic micro-lens array and its focusing properties by using Monte-Carlo simulations and trajectory tracing method. The result shows that the proposed micro-lens array can be used to focus effectively a cold atomic beam, even to load ultracold atoms or a BEC sample into a 2D optical lattice formed by blue detuned hollow beams.
文摘An ionic liquid-polyaniline/tungsten disulfide(IL-PANI/WS_(2))composite was synthesized in 1-butyl-3-methylimidazole tetrafluoroborate(LB104)aqueous solution by in-situ polymerization and characterized by Fourier transform infrared spectroscopy.A current-carrying friction and wear tester was used to study the tribological properties of steel-steel and copper-copper friction pairs lubricated by an IL-PANI/WS_(2) lithium complex grease(LCG).After the experiment,scanning electron microscope was used to observe the surface morphology of the wear scar on the steel and copper plates,and X-ray photoelectron spectrometer was used to analyze the elemental composition of the wear scar surface.The results show that compared with greases containing IL-PANI and WS_(2),greases containing IL-PANI/WS_(2) exhibit better antiwear performance when lubricating steel-steel friction pairs and better tribological performance and electrical conductivity when lubricating copper-copper friction pairs.Therefore,it can be concluded that WS_(2) and IL-PANI have a synergistic effect.
基金the National Natural Science Foundation of China(Nos.U1034002 and 50902133).
文摘Using special testers,the triboelectric behaviors of several materials were investigated in this paper under the conditions of high speeds and large currents.The obtained results revealed that the tribological behaviors and current-conducting characteristics have complicated interrelationships.Worsening in the servicing conditions can obviously deteriorate the tribological as well as electrical behaviors;high sliding speeds and large electrical currents can worsen the tribological and electrical conductivity properties,while an appropriate contact pressure can benefit the electrical contact properties.Further analyses reveal that the worsening effects of the above factors,such as frictional heat,arc discharge,arc heat,and surface morphology,result in poor triboelectric contact performance.Among these,the electric arc is one of the most serious factors,because the occurrence of an electric arc may cause severe oxidation,melting,and roughening of the contact surface,thereby causing deterioration in the current-conducting quality as well as material loss.
基金supported by the National Natural Science Foundation of China(Grant No.41304132)the 53-Class General Financial Grant from the China Postdoctoral Science Foundation(Grant No.2013M532115)
文摘This study presents observation and detailed analysis on the double layers (DLs) in the ramp and the foreshock contacting with the foot of the terrestrial bow shock by THEMIS on September 14, 2008 under enhanced dynamic pressure in the solar wind. The results reveal that: (1) The time duration of the double layers is nus 10-40 mV/m. (2) On assuming a propagation speed at the ion mainly 3-8 ms, and their max parallel electric field is miacoustic speed (vs), their spatial scale is estimated to be 0.3-1.15 km (about 75-200 2D). (3) The net potential drop of DLs is estimated to be 5-32 V. (4) The DLs in the ramp and the foreshock contacting to the foot of the bow shock is current-carrying as a result of development and evolution of nonlinear phase of instability in the self-consistent current-carrying plasma. The DLs may play an important role in strong turbulence in the foreshock contacting with the foot of the bow shock.