The computational study of the combined effects of radiation and hydro- magnetics on the natural convection flow of a viscous, incompressible, and electrically conducting fluid past a magnetized permeable vertical pla...The computational study of the combined effects of radiation and hydro- magnetics on the natural convection flow of a viscous, incompressible, and electrically conducting fluid past a magnetized permeable vertical plate is presented. The governing non-similar equations are numerically solved by using a finite difference method for all values of the suction parameter and the asymptotic solution for small and large values of ~. The effects of varying the Prandtl number Pr, the magnetic Prandtl number Prm, the magnetic force parameter S, the radiation parameter Rd, and the surface temperature Ow on the coefficients of the skin friction, the rate of heat transfer, and the current density are shown graphically and in tables. An attempt is made to examine the effects of the above mentioned physical parameters on the velocity profile, the temperature distribution, and the transverse component of the magnetic field.展开更多
MgB2 is a relatively new superconductor; it has attracted great interest from superconductor researchers all over the world. Thorough investigations have been carried out to study the material fabrication, as well as ...MgB2 is a relatively new superconductor; it has attracted great interest from superconductor researchers all over the world. Thorough investigations have been carried out to study the material fabrication, as well as to study the material and superconducting properties from a fundamental physics point of view. The University of Wollongong has played a very active role in this research and a leading role in the research on high critical current density and high critical magnetic fields. Our recent research on the improvement of critical current density and the upper critical magnetic field by carbon-based compound doping is reviewed in this paper.展开更多
Titanium machining is one of the challenging tasks to modem machining processes. Especially fabricat- ing microfeatures on titanium appear as a potential research interest. Electrochemical micromachining (EMM) is an...Titanium machining is one of the challenging tasks to modem machining processes. Especially fabricat- ing microfeatures on titanium appear as a potential research interest. Electrochemical micromachining (EMM) is an effective process to generate microfeatures by anodic dis- solution. Machining of titanium by anodic dissolution is different than other metals because of its tendency to form passive oxide layer. The phenomenon of progression of microfeature by conversion of passive oxide layer into transpassive has been investigated with the help of mask- less EMM technique. Suitable range of machining voltage has been established to attain the controlled anodic disso- lution of titanium by converting passive oxide film of titanium into transpassive with nonaqueous electrolyte. The experimental outcomes revealed that the micromachining of titanium with controlled anodic dissolution could be possible even at lower machining voltage in the range of 6-8 V. This work successfully explored the possibility of generation of microfeatures on commercially pure titanium by anodic dissolution process in microscopic domain by demonstrating successful fabrication of various microfea- tures, such as microholes and microcantilevers.展开更多
文摘The computational study of the combined effects of radiation and hydro- magnetics on the natural convection flow of a viscous, incompressible, and electrically conducting fluid past a magnetized permeable vertical plate is presented. The governing non-similar equations are numerically solved by using a finite difference method for all values of the suction parameter and the asymptotic solution for small and large values of ~. The effects of varying the Prandtl number Pr, the magnetic Prandtl number Prm, the magnetic force parameter S, the radiation parameter Rd, and the surface temperature Ow on the coefficients of the skin friction, the rate of heat transfer, and the current density are shown graphically and in tables. An attempt is made to examine the effects of the above mentioned physical parameters on the velocity profile, the temperature distribution, and the transverse component of the magnetic field.
基金This work was supported by the Australian Research Council (ARC) underGrant No. DP0557544.
文摘MgB2 is a relatively new superconductor; it has attracted great interest from superconductor researchers all over the world. Thorough investigations have been carried out to study the material fabrication, as well as to study the material and superconducting properties from a fundamental physics point of view. The University of Wollongong has played a very active role in this research and a leading role in the research on high critical current density and high critical magnetic fields. Our recent research on the improvement of critical current density and the upper critical magnetic field by carbon-based compound doping is reviewed in this paper.
文摘Titanium machining is one of the challenging tasks to modem machining processes. Especially fabricat- ing microfeatures on titanium appear as a potential research interest. Electrochemical micromachining (EMM) is an effective process to generate microfeatures by anodic dis- solution. Machining of titanium by anodic dissolution is different than other metals because of its tendency to form passive oxide layer. The phenomenon of progression of microfeature by conversion of passive oxide layer into transpassive has been investigated with the help of mask- less EMM technique. Suitable range of machining voltage has been established to attain the controlled anodic disso- lution of titanium by converting passive oxide film of titanium into transpassive with nonaqueous electrolyte. The experimental outcomes revealed that the micromachining of titanium with controlled anodic dissolution could be possible even at lower machining voltage in the range of 6-8 V. This work successfully explored the possibility of generation of microfeatures on commercially pure titanium by anodic dissolution process in microscopic domain by demonstrating successful fabrication of various microfea- tures, such as microholes and microcantilevers.