For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest o...For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.展开更多
A new technique, involving tool making, clearing, staining, cutting and mounting specimens on slides, was described for studying Collembola taxonomy. It could resolve the problem of observing Collembola glass specimen...A new technique, involving tool making, clearing, staining, cutting and mounting specimens on slides, was described for studying Collembola taxonomy. It could resolve the problem of observing Collembola glass specimens under standard optical microscopy, because the phase-contrast microscope has not been available for all researchers. A type of micro cutting probe (about 1 μm in tip diameter) was designed, and it made the cutting method go from two-handed to one-handed, which was a huge step forward in the cutting method of Collembola. The micro cutting probe was custom designed for Collembola using two electric grinders, followed by ferric tannate staining with a stable blue color, mounting in specialized solutions and sealing with a neutral quick-drying gum. We also described a method to make glass capillary extractor and glass capillary brush to make sure a better condition of cleared specimens.展开更多
As a cutting tool,diamond films made by chemical vapor deposition(CVD) outperformed polycrystalline diamond(PCD) sintered under ultrahigh pressure.For example,the longevity of the CVD tools may be 2~5 times that of P...As a cutting tool,diamond films made by chemical vapor deposition(CVD) outperformed polycrystalline diamond(PCD) sintered under ultrahigh pressure.For example,the longevity of the CVD tools may be 2~5 times that of PCD inserts.In addition,the former cutting paths are strainghter with less chipping on the edge.However,there have been no report on CVD diamond films that were used as a roller scriber for splitting large glass panels.Our research demonstrated that the CVD diamond film could concentrate the energy in a smaller area(about 1/4),so the glass compressed by the tip of the diamond film was under a larger tensile stress in perpendicular to the direction of compression.The tensile stress then initiated the microcracks that were more in line with the direction of the compression. The reason that CVD diamond film could concentrate the compressive stress was due to its 100%diamond content.The high diamond content could allow the tip to be polished sharper.In contrast,the PCD cutting tip contained micro grains of cobalt that were softer than glass.As a result,the compressional stress was spreading out due to the larger area of contact.Consequently,the microcracks initiated at the PCD tip were random and they might not propagate along the direction of cutting.展开更多
This paper mainly describes a new approach to optimizing of the cutting glass fiber with multiple performance characteristics, based on reliability analysis, Taguchi and Grey methods. During the cutting process, the s...This paper mainly describes a new approach to optimizing of the cutting glass fiber with multiple performance characteristics, based on reliability analysis, Taguchi and Grey methods. During the cutting process, the speed, the volume and the cutting load are optimized cutting parameters when the performance characteristics, which include Weibull modulus and blade wear, are taken into consideration. In this paper, optimization with multiple performance characteristics is found to be the highest cutting speed and the smallest cutting volume, and the medium cutting load. An analysis of the variance of the blade wear indicates that the cutting speed (47.21%), the cutting volume (14.62%) and the cutting load (12.20%) are the most significant parameters in the cutting process of glass fibers. In summary, the most optimal cutting parameter should be A3B1C2. The results of experiments have shown that the multiple performance characteristics of cutting glass fiber are improved effectively through this approach.展开更多
Treatment by mirror therapy (MT) restores motion in injured limbs without invasive procedures. This process is widely accepted for rehabilitating patients with phantom limb pain, stroke victims, or patients who need t...Treatment by mirror therapy (MT) restores motion in injured limbs without invasive procedures. This process is widely accepted for rehabilitating patients with phantom limb pain, stroke victims, or patients who need therapy after nerve damage. The procedure is specifically useful in restoring motion to the hand after surgical repairs to the extensor muscle and tendons. Mirror therapy rewires the brain by making the restored limb remember hand motions by observing the motions of a normal hand. The concept of a mirror image is that the movement of the uninjured arm forms the illusion of the same movement in the affected arm. Efforts to repeat hand movements elicit the same reaction in the affected hand in what is referred to as Hebbian learning. This case study evaluated MT’s effectiveness in motion restoration after a glass injury. This case study showed restoration of normal hand motions in a patient following surgery to repair a glass cut to the arm. Surgery repaired the lacerated extensor tendon and radial nerve. The muscle belly was repaired, and a graft fixed the nerve gap. Once the arm healed, the patient underwent rehabilitation in mirror therapy to restore normal function in his hand. After conducting mirror therapy, the pain was eliminated, and the patient restored normal function of moving the hand and finger extension. In addition, the therapy could be conducted at home without needing a professional. The effectiveness of mirror therapy was seen in the functional restoration of hand and finger movement. The process is also less complicated as it can be performed at home.展开更多
The Pr3+-Yb3+ co-doped oxyfluoride glass-ceramics containing CaF2 nanocrystals were obtained by thermal treatment on the as-made glasses. The structure of fluoride nanocrystals was investigated. The light-emitting m...The Pr3+-Yb3+ co-doped oxyfluoride glass-ceramics containing CaF2 nanocrystals were obtained by thermal treatment on the as-made glasses. The structure of fluoride nanocrystals was investigated. The light-emitting mechanism of pr3+-yb3+ in the near infrared region was proposed and the fluorescence lifetime and quantum efficiency was calculated. The results indicate that the main phase in the oxyfluoride glass- ceramics is CaF2 nanocrystal sized at 30 nm. Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) have proved the incorporation of Pr3+ and Yb3+ into CaF2 nanocrystal lattice, Near-infrared quantum cutting involving Yb3+ 980 nm and 1 015 tun (2F5/2→2F7/2) emission has been achieved upon the excitation of the 3P0 energy level of Pr3+ at 482 nm. The fluorescence lifetime decreases sharply and quantum efficiency increases with increasing Yb3+ concentration, and the optimal quantum efficiency reaches 191%.展开更多
为研究氧化铟锡(indium tin oxide,ITO)导电玻璃材料的去除机理,采用单磨粒对材料进行切削仿真,建立了ITO导电玻璃的材料模型,根据加工表面形貌、应力和切削力情况分析了材料去除机理,之后研究了切削参数对切削力和残余应力的影响,并与...为研究氧化铟锡(indium tin oxide,ITO)导电玻璃材料的去除机理,采用单磨粒对材料进行切削仿真,建立了ITO导电玻璃的材料模型,根据加工表面形貌、应力和切削力情况分析了材料去除机理,之后研究了切削参数对切削力和残余应力的影响,并与钠钙玻璃进行对比分析。结果表明:在磨粒的切削过程中,材料的去除受ITO薄膜层、玻璃基底和内聚力接触行为的共同影响,会产生分层、通道开裂和层间断裂等失效形式;随着磨粒的进给,切削力在一定范围内波动,且呈现上升、稳定、降低的变化,同时磨粒的切削力与切削速度和切削深度呈正相关;薄膜上残余应力相比玻璃基底,数值更大且波动更剧烈;当切削深度接近ITO薄膜厚度时,薄膜的存在对磨粒切削行为的影响显著。展开更多
基金supported by National Natural Science Foundation of China(Grant No. 50775057)
文摘For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.
文摘A new technique, involving tool making, clearing, staining, cutting and mounting specimens on slides, was described for studying Collembola taxonomy. It could resolve the problem of observing Collembola glass specimens under standard optical microscopy, because the phase-contrast microscope has not been available for all researchers. A type of micro cutting probe (about 1 μm in tip diameter) was designed, and it made the cutting method go from two-handed to one-handed, which was a huge step forward in the cutting method of Collembola. The micro cutting probe was custom designed for Collembola using two electric grinders, followed by ferric tannate staining with a stable blue color, mounting in specialized solutions and sealing with a neutral quick-drying gum. We also described a method to make glass capillary extractor and glass capillary brush to make sure a better condition of cleared specimens.
文摘As a cutting tool,diamond films made by chemical vapor deposition(CVD) outperformed polycrystalline diamond(PCD) sintered under ultrahigh pressure.For example,the longevity of the CVD tools may be 2~5 times that of PCD inserts.In addition,the former cutting paths are strainghter with less chipping on the edge.However,there have been no report on CVD diamond films that were used as a roller scriber for splitting large glass panels.Our research demonstrated that the CVD diamond film could concentrate the energy in a smaller area(about 1/4),so the glass compressed by the tip of the diamond film was under a larger tensile stress in perpendicular to the direction of compression.The tensile stress then initiated the microcracks that were more in line with the direction of the compression. The reason that CVD diamond film could concentrate the compressive stress was due to its 100%diamond content.The high diamond content could allow the tip to be polished sharper.In contrast,the PCD cutting tip contained micro grains of cobalt that were softer than glass.As a result,the compressional stress was spreading out due to the larger area of contact.Consequently,the microcracks initiated at the PCD tip were random and they might not propagate along the direction of cutting.
文摘This paper mainly describes a new approach to optimizing of the cutting glass fiber with multiple performance characteristics, based on reliability analysis, Taguchi and Grey methods. During the cutting process, the speed, the volume and the cutting load are optimized cutting parameters when the performance characteristics, which include Weibull modulus and blade wear, are taken into consideration. In this paper, optimization with multiple performance characteristics is found to be the highest cutting speed and the smallest cutting volume, and the medium cutting load. An analysis of the variance of the blade wear indicates that the cutting speed (47.21%), the cutting volume (14.62%) and the cutting load (12.20%) are the most significant parameters in the cutting process of glass fibers. In summary, the most optimal cutting parameter should be A3B1C2. The results of experiments have shown that the multiple performance characteristics of cutting glass fiber are improved effectively through this approach.
文摘Treatment by mirror therapy (MT) restores motion in injured limbs without invasive procedures. This process is widely accepted for rehabilitating patients with phantom limb pain, stroke victims, or patients who need therapy after nerve damage. The procedure is specifically useful in restoring motion to the hand after surgical repairs to the extensor muscle and tendons. Mirror therapy rewires the brain by making the restored limb remember hand motions by observing the motions of a normal hand. The concept of a mirror image is that the movement of the uninjured arm forms the illusion of the same movement in the affected arm. Efforts to repeat hand movements elicit the same reaction in the affected hand in what is referred to as Hebbian learning. This case study evaluated MT’s effectiveness in motion restoration after a glass injury. This case study showed restoration of normal hand motions in a patient following surgery to repair a glass cut to the arm. Surgery repaired the lacerated extensor tendon and radial nerve. The muscle belly was repaired, and a graft fixed the nerve gap. Once the arm healed, the patient underwent rehabilitation in mirror therapy to restore normal function in his hand. After conducting mirror therapy, the pain was eliminated, and the patient restored normal function of moving the hand and finger extension. In addition, the therapy could be conducted at home without needing a professional. The effectiveness of mirror therapy was seen in the functional restoration of hand and finger movement. The process is also less complicated as it can be performed at home.
基金Funded by Key Laboratory for Ultrafine Materials of Ministry of Education(No.08DZ2230500),School of Materials Science and Engineering,East China University of Science and Technology
文摘The Pr3+-Yb3+ co-doped oxyfluoride glass-ceramics containing CaF2 nanocrystals were obtained by thermal treatment on the as-made glasses. The structure of fluoride nanocrystals was investigated. The light-emitting mechanism of pr3+-yb3+ in the near infrared region was proposed and the fluorescence lifetime and quantum efficiency was calculated. The results indicate that the main phase in the oxyfluoride glass- ceramics is CaF2 nanocrystal sized at 30 nm. Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) have proved the incorporation of Pr3+ and Yb3+ into CaF2 nanocrystal lattice, Near-infrared quantum cutting involving Yb3+ 980 nm and 1 015 tun (2F5/2→2F7/2) emission has been achieved upon the excitation of the 3P0 energy level of Pr3+ at 482 nm. The fluorescence lifetime decreases sharply and quantum efficiency increases with increasing Yb3+ concentration, and the optimal quantum efficiency reaches 191%.
文摘为研究氧化铟锡(indium tin oxide,ITO)导电玻璃材料的去除机理,采用单磨粒对材料进行切削仿真,建立了ITO导电玻璃的材料模型,根据加工表面形貌、应力和切削力情况分析了材料去除机理,之后研究了切削参数对切削力和残余应力的影响,并与钠钙玻璃进行对比分析。结果表明:在磨粒的切削过程中,材料的去除受ITO薄膜层、玻璃基底和内聚力接触行为的共同影响,会产生分层、通道开裂和层间断裂等失效形式;随着磨粒的进给,切削力在一定范围内波动,且呈现上升、稳定、降低的变化,同时磨粒的切削力与切削速度和切削深度呈正相关;薄膜上残余应力相比玻璃基底,数值更大且波动更剧烈;当切削深度接近ITO薄膜厚度时,薄膜的存在对磨粒切削行为的影响显著。