In tool-path generation process for 5-axis face milling,the specification of cutter posture is one of the critical issues that contribute to the computation load. In this paper,a quick algorithm is presented to specif...In tool-path generation process for 5-axis face milling,the specification of cutter posture is one of the critical issues that contribute to the computation load. In this paper,a quick algorithm is presented to specify the cutter posture at a surface point based on the cutter’s accessibility maps (A-maps) at all the sampled points,obtained during cutter selection. Integrated with this quick algorithm,an efficient approach is proposed to generate a set of iso-planar tool-paths for finishing a given surface withmaximum machining efficiency without violating the desirable profile and scallop height tolerance. One example is given to confirm the validity of the quick algorithm for cutter posture and the efficiency of the algorithm for tool-path generation.展开更多
Five-axis ball-end milling is commonly used to machine the complex surfaces. Local tool interference phenomenon which often occurs in five-axis milling should be urgently solved. In this paper, a simplified method to ...Five-axis ball-end milling is commonly used to machine the complex surfaces. Local tool interference phenomenon which often occurs in five-axis milling should be urgently solved. In this paper, a simplified method to detect the occurrence of local tool interference and modify tool position is proposed. First, the detection matrix is established to detect local tool interference at all the cutter location points on tool path simultaneously in five-axis ball-end milling of complex surfaces. The algorithm of detection matrix based on point arithmetic is simple. Secondly, the new coordinates of the modified interfering-free points are obtained precisely by using the genetic algorithm. The feasibility of the method is validated by simulation in Matlab. This research is benefit to simplify the calculation of local tool interference detection and tool position modification.展开更多
文摘In tool-path generation process for 5-axis face milling,the specification of cutter posture is one of the critical issues that contribute to the computation load. In this paper,a quick algorithm is presented to specify the cutter posture at a surface point based on the cutter’s accessibility maps (A-maps) at all the sampled points,obtained during cutter selection. Integrated with this quick algorithm,an efficient approach is proposed to generate a set of iso-planar tool-paths for finishing a given surface withmaximum machining efficiency without violating the desirable profile and scallop height tolerance. One example is given to confirm the validity of the quick algorithm for cutter posture and the efficiency of the algorithm for tool-path generation.
基金Funded by the National Natural Science Foundation of China (No.51575321)the Major Science and Technology Innovation Project of Shandong Province (No.2018CXGC0804)Taishan Scholars Program of Shandong Province (No.ts201712002)
文摘Five-axis ball-end milling is commonly used to machine the complex surfaces. Local tool interference phenomenon which often occurs in five-axis milling should be urgently solved. In this paper, a simplified method to detect the occurrence of local tool interference and modify tool position is proposed. First, the detection matrix is established to detect local tool interference at all the cutter location points on tool path simultaneously in five-axis ball-end milling of complex surfaces. The algorithm of detection matrix based on point arithmetic is simple. Secondly, the new coordinates of the modified interfering-free points are obtained precisely by using the genetic algorithm. The feasibility of the method is validated by simulation in Matlab. This research is benefit to simplify the calculation of local tool interference detection and tool position modification.