期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A New-type of Cermets Cutter with Nano-TiN Addition:Microstructure, Mechanical and Cutting Properties
1
作者 刘宁 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第1期63-67,共5页
The microstructure and mechanical properties of a new-type of cermets cutter ( tool A ) with nano- TiN modification and its cutting properties in cutting gray cast iron are investigated. SEM and TEM observatioas of... The microstructure and mechanical properties of a new-type of cermets cutter ( tool A ) with nano- TiN modification and its cutting properties in cutting gray cast iron are investigated. SEM and TEM observatioas of the microstructure of the above material reveal that nano- TiN modified cermets possess a finer microstructare than conventional cermets. In the cutting tests, for comparison, cemented carbide cutter ( YG8, tool B) was also utilized. The cutting results show that the cutting properties of tool A are superior to those of tool B. It is also Jound that the predominant failare mode of tool A is normal wear and micro-spalling under lower cutting quantities, and that chipping occurs under higher cutting quanthies . SEM analysis reveals that cohesion, oxidation and diffusion wear become very apparent at a higher cutting speed. On the contrary, grain wear also exists but is not apparent. 展开更多
关键词 microstructare cermets nano- TiN ndditioas cutting properties failure mode
下载PDF
MULTI-SCALE AND MULTI-PHASE NANOCOMPOSITE CERAMIC TOOLS AND CUTTING PERFORMANCE 被引量:3
2
作者 HUANG Chuanzhen LIU Hanlian +1 位作者 WANG Jun WANG Hui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期5-7,共3页
An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and f... An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of A1203/TiC (LZ) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa . m^0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched. 展开更多
关键词 Multi-scale and multi-phase Ceramic tool material Mechanical properties cutting performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部