期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Milling Parameters Optimization of Al-Li Alloy Thin-Wall Workpieces Using Response Surface Methodology and Particle Swarm Optimization 被引量:2
1
作者 Haitao Yue Chenguang Guo +2 位作者 Qiang Li Lijuan Zhao Guangbo Hao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期937-952,共16页
To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption.Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based... To improve the milling surface quality of the Al-Li alloy thin-wall workpieces and reduce the cutting energy consumption.Experimental research on the milling processing of AA2195 Al-Li alloy thin-wall workpieces based on Response Surface Methodology was carried out.The single factor and interaction of milling parameters on surface roughness and specific cutting energy were analyzed,and the multi-objective optimization model was constructed.The Multiobjective Particle Swarm Optimization algorithm introducing the Chaos Local Search algorithm and the adaptive inertial weight was applied to determine the optimal combination of milling parameters.It was observed that surface roughness was mainly influenced by feed per tooth,and specific cutting energy was negatively correlated with feed per tooth,radial cutting depth and axial cutting depth,while cutting speed has a non-significant influence on specific cutting energy.The optimal combination of milling parameters with different priorities was obtained.The experimental results showed that the maximum relative error of measured and predicted values was 8.05%,and the model had high reliability,which ensured the low surface roughness and cutting energy consumption.It was of great guiding significance for the success of Al-Li alloy thin-wall milling with a high precision and energy efficiency. 展开更多
关键词 Al-Li alloy thin-wall workpieces response surface methodology surface roughness specific cutting energy multi-objective particle swarm optimization algorithm
下载PDF
Experimental technique to analyze the influence of cutting conditions on specific energy consumption during abrasive metal cutting with thin discs
2
作者 Muhammad Rizwan Awan Hernán A.González Rojas +1 位作者 Jose I.Perat Benavides Saqib Hameed 《Advances in Manufacturing》 SCIE EI CAS CSCD 2022年第2期260-271,共12页
Specific energy consumption is an important indicatorfora better understanding of the machinability of materials.The present study aims to estimate the specific energy consumption for abrasive metal cutting with ultra... Specific energy consumption is an important indicatorfora better understanding of the machinability of materials.The present study aims to estimate the specific energy consumption for abrasive metal cutting with ultrathin discs at comparatively low and medium feed rates.Using an experimental technique,the cutting power was measured at four predefined feed rates for S235JR,intermetallic Fe-Al(40%),and C45K with different thermal treatments.The variation in the specific energy consumption with the material removal rate was analyzed through an empirical model,which enabled us to distinguish three phenomena of energy dissipation during material removal.The thermal treatment and mechanical properties of materials have a significant impact on the energy consumption pattern,its corresponding components,and cutting power.Ductile materials consume more specific cutting energy than brttle materials.The specific cutting energy is the minimum energy required to remove the material,and plowing energy is found to be the most significant phenomenon of energy dissipation. 展开更多
关键词 Specific cutting energy Specific energy consumption Metal cutting with abrasive disc Abrasive cut of foperation Cutting intermetallic alloy Fe-Al(40%)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部