The structural and electronic properties of the ternary CuxAg1–xI, alloy have been calculated, using the full-potential linear muffin-tin-orbital (FP-LMTO) method based on density functional theory, within both the l...The structural and electronic properties of the ternary CuxAg1–xI, alloy have been calculated, using the full-potential linear muffin-tin-orbital (FP-LMTO) method based on density functional theory, within both the local density approximation and the generalized gradient approximation (GGA). The equilibrium lattice constants and the bulk modulus are compared with previous theoretical calculations. The concentration dependence of the electronic band structure and the direct-indirect band gaps is also investigated. Using the approach of Zunger and co-workers the microscopic origins of the gap bowing were also explained.展开更多
文摘The structural and electronic properties of the ternary CuxAg1–xI, alloy have been calculated, using the full-potential linear muffin-tin-orbital (FP-LMTO) method based on density functional theory, within both the local density approximation and the generalized gradient approximation (GGA). The equilibrium lattice constants and the bulk modulus are compared with previous theoretical calculations. The concentration dependence of the electronic band structure and the direct-indirect band gaps is also investigated. Using the approach of Zunger and co-workers the microscopic origins of the gap bowing were also explained.