A cyano-substituted diarylethlene derivative aggregation-induced emission (ALE) dye with two amino end-groups and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride were facilely incorporated into red fluorescen...A cyano-substituted diarylethlene derivative aggregation-induced emission (ALE) dye with two amino end-groups and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride were facilely incorporated into red fluorescent organic nanoparticles (FONs) via room temperature anhydride ring-opening polymerization under an air atmosphere. These obtained RO-HFDA FONs were characterized by a series of techniques including gel permeation chromatography, Fourier transform infrared spectroscopy, size distribution and zeta potential measurements, UV-Vis absorption spectrum, fluorescent spectroscopy and transmission electron microscopy. Biocompatibility evaluation and cell uptake behavior of RO-HFDA FONs were further investigated to explore their potential biomedical application. We demonstrated that such FONs showed high water dispersibility, stable uniform spherical morphology (150-200 nm), broad excitation band (350-605 nm), intense red fluorescence (627 nm) and excellent biocompatibility, making them promising for cell imaging applications.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21134004,21201108 and 51363016)the National 973 Project(No.2011CB935700)China Postdoctoral Science Foundation(Nos.2012M520243,2013T60100)
文摘A cyano-substituted diarylethlene derivative aggregation-induced emission (ALE) dye with two amino end-groups and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride were facilely incorporated into red fluorescent organic nanoparticles (FONs) via room temperature anhydride ring-opening polymerization under an air atmosphere. These obtained RO-HFDA FONs were characterized by a series of techniques including gel permeation chromatography, Fourier transform infrared spectroscopy, size distribution and zeta potential measurements, UV-Vis absorption spectrum, fluorescent spectroscopy and transmission electron microscopy. Biocompatibility evaluation and cell uptake behavior of RO-HFDA FONs were further investigated to explore their potential biomedical application. We demonstrated that such FONs showed high water dispersibility, stable uniform spherical morphology (150-200 nm), broad excitation band (350-605 nm), intense red fluorescence (627 nm) and excellent biocompatibility, making them promising for cell imaging applications.