期刊文献+
共找到158篇文章
< 1 2 8 >
每页显示 20 50 100
A Review of Hybrid Cyber Threats Modelling and Detection Using Artificial Intelligence in IIoT 被引量:1
1
作者 Yifan Liu Shancang Li +1 位作者 Xinheng Wang Li Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1233-1261,共29页
The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated... The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats. 展开更多
关键词 cyber security Industrial Internet of Things artificial intelligence machine learning algorithms hybrid cyber threats
下载PDF
Chinese Cyber Threat Intelligence Named Entity Recognition via RoBERTa-wwm-RDCNN-CRF 被引量:1
2
作者 Zhen Zhen Jian Gao 《Computers, Materials & Continua》 SCIE EI 2023年第10期299-323,共25页
In recent years,cyber attacks have been intensifying and causing great harm to individuals,companies,and countries.The mining of cyber threat intelligence(CTI)can facilitate intelligence integration and serve well in ... In recent years,cyber attacks have been intensifying and causing great harm to individuals,companies,and countries.The mining of cyber threat intelligence(CTI)can facilitate intelligence integration and serve well in combating cyber attacks.Named Entity Recognition(NER),as a crucial component of text mining,can structure complex CTI text and aid cybersecurity professionals in effectively countering threats.However,current CTI NER research has mainly focused on studying English CTI.In the limited studies conducted on Chinese text,existing models have shown poor performance.To fully utilize the power of Chinese pre-trained language models(PLMs)and conquer the problem of lengthy infrequent English words mixing in the Chinese CTIs,we propose a residual dilated convolutional neural network(RDCNN)with a conditional random field(CRF)based on a robustly optimized bidirectional encoder representation from transformers pre-training approach with whole word masking(RoBERTa-wwm),abbreviated as RoBERTa-wwm-RDCNN-CRF.We are the first to experiment on the relevant open source dataset and achieve an F1-score of 82.35%,which exceeds the common baseline model bidirectional encoder representation from transformers(BERT)-bidirectional long short-term memory(BiLSTM)-CRF in this field by about 19.52%and exceeds the current state-of-the-art model,BERT-RDCNN-CRF,by about 3.53%.In addition,we conducted an ablation study on the encoder part of the model to verify the effectiveness of the proposed model and an in-depth investigation of the PLMs and encoder part of the model to verify the effectiveness of the proposed model.The RoBERTa-wwm-RDCNN-CRF model,the shared pre-processing,and augmentation methods can serve the subsequent fundamental tasks such as cybersecurity information extraction and knowledge graph construction,contributing to important applications in downstream tasks such as intrusion detection and advanced persistent threat(APT)attack detection. 展开更多
关键词 cyberSECURITY cyber threat intelligence named entity recognition
下载PDF
Multiclass Classification for Cyber Threats Detection on Twitter
3
作者 Adnan Hussein Abdulwahab Ali Almazroi 《Computers, Materials & Continua》 SCIE EI 2023年第12期3853-3866,共14页
The advances in technology increase the number of internet systems usage.As a result,cybersecurity issues have become more common.Cyber threats are one of the main problems in the area of cybersecurity.However,detecti... The advances in technology increase the number of internet systems usage.As a result,cybersecurity issues have become more common.Cyber threats are one of the main problems in the area of cybersecurity.However,detecting cybersecurity threats is not a trivial task and thus is the center of focus for many researchers due to its importance.This study aims to analyze Twitter data to detect cyber threats using a multiclass classification approach.The data is passed through different tasks to prepare it for the analysis.Term Frequency and Inverse Document Frequency(TFIDF)features are extracted to vectorize the cleaned data and several machine learning algorithms are used to classify the Twitter posts into multiple classes of cyber threats.The results are evaluated using different metrics including precision,recall,F-score,and accuracy.This work contributes to the cyber security research area.The experiments revealed the promised results of the analysis using the Random Forest(RF)algorithm with(F-score=81%).This result outperformed the existing studies in the field of cyber threat detection and showed the importance of detecting cyber threats in social media posts.There is a need for more investigation in the field of multiclass classification to achieve more accurate results.In the future,this study suggests applying different data representations for the feature extraction other than TF-IDF such as Word2Vec,and adding a new phase for feature selection to select the optimum features subset to achieve higher accuracy of the detection process. 展开更多
关键词 cyberSECURITY cyber threat detection artificial intelligence machine learning TWITTER
下载PDF
TDLens:Toward an Empirical Evaluation of Provenance Graph-Based Approach to Cyber Threat Detection
4
作者 Rui Mei Hanbing Yan +2 位作者 Qinqin Wang Zhihui Han Zhuohang Lyu 《China Communications》 SCIE CSCD 2022年第10期102-115,共14页
To combat increasingly sophisticated cyber attacks,the security community has proposed and deployed a large body of threat detection approaches to discover malicious behaviors on host systems and attack payloads in ne... To combat increasingly sophisticated cyber attacks,the security community has proposed and deployed a large body of threat detection approaches to discover malicious behaviors on host systems and attack payloads in network traffic.Several studies have begun to focus on threat detection methods based on provenance data of host-level event tracing.On the other side,with the significant development of big data and artificial intelligence technologies,large-scale graph computing has been widely used.To this end,kinds of research try to bridge the gap between threat detection based on host log provenance data and graph algorithm,and propose the threat detection algorithm based on system provenance graph.These approaches usually generate the system provenance graph via tagging and tracking of system events,and then leverage the characteristics of the graph to conduct threat detection and attack investigation.For the purpose of deeply understanding the correctness,effectiveness,and efficiency of different graph-based threat detection algorithms,we pay attention to mainstream threat detection methods based on provenance graphs.We select and implement 5 state-of-the-art threat detection approaches among a large number of studies as evaluation objects for further analysis.To this end,we collect about 40GB of host-level raw log data in a real-world IT environment,and simulate 6 types of cyber attack scenarios in an isolated environment for malicious provenance data to build our evaluation datasets.The crosswise comparison and longitudinal assessment interpret in detail these detection approaches can detect which attack scenarios well and why.Our empirical evaluation provides a solid foundation for the improvement direction of the threat detection approach. 展开更多
关键词 cyber threat detection causality dependency graph data provenance
下载PDF
The Economics of Sharing Unclassified Cyber Threat Intelligence by Government Agencies and Departments
5
作者 Josiah Dykstra Lawrence A. Gordon +1 位作者 Martin P. Loeb Lei Zhou 《Journal of Information Security》 2022年第3期85-100,共16页
This paper extends the literature on the economics of sharing cybersecurity information by and among profit-seeking firms by modeling the case where a government agency or department publicly shares unclassified cyber... This paper extends the literature on the economics of sharing cybersecurity information by and among profit-seeking firms by modeling the case where a government agency or department publicly shares unclassified cyber threat information with all organizations. In prior cybersecurity information sharing models a common element was reciprocity—i.e., firms receiving shared information are also asked to share their private cybersecurity information with all other firms (via an information sharing arrangement). In contrast, sharing of unclassified cyber threat intelligence (CTI) by a government agency or department is not based on reciprocal sharing by the recipient organizations. After considering the government’s cost of preparing and disseminating CTI, as well as the benefits to the recipients of the CTI, we provide sufficient conditions for sharing of CTI to result in an increase in social welfare. Under a broad set of general conditions, sharing of CTI will increase social welfare gross of the costs to the government agency or department sharing the information. Thus, if the entity can keep the sharing costs low, sharing cybersecurity information will result in an increase in net social welfare. 展开更多
关键词 cyber threat Intelligence Economics of Information Sharing
下载PDF
Cyber Resilience through Real-Time Threat Analysis in Information Security
6
作者 Aparna Gadhi Ragha Madhavi Gondu +1 位作者 Hitendra Chaudhary Olatunde Abiona 《International Journal of Communications, Network and System Sciences》 2024年第4期51-67,共17页
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t... This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1]. 展开更多
关键词 cybersecurity Information Security Network Security cyber Resilience Real-Time threat Analysis cyber threats cyberattacks threat Intelligence Machine Learning Artificial Intelligence threat Detection threat Mitigation Risk Assessment Vulnerability Management Incident Response Security Orchestration Automation threat Landscape cyber-Physical Systems Critical Infrastructure Data Protection Privacy Compliance Regulations Policy Ethics cyberCRIME threat Actors threat Modeling Security Architecture
下载PDF
TriCTI:an actionable cyber threat intelligence discovery system via trigger-enhanced neural network 被引量:5
7
作者 Jian Lu Junjie Yan +5 位作者 Jun Jiang Yitong He Xuren Wang Zhengwei jiang Peian Yang Ning Li 《Cybersecurity》 EI CSCD 2022年第3期18-33,共16页
The cybersecurity report provides unstructured actionable cyber threat intelligence(CTI)with detailed threat attack procedures and indicators of compromise(IOCs),e.g.,malware hash or URL(uniform resource locator)of co... The cybersecurity report provides unstructured actionable cyber threat intelligence(CTI)with detailed threat attack procedures and indicators of compromise(IOCs),e.g.,malware hash or URL(uniform resource locator)of command and control server.The actionable CTI,integrated into intrusion detection systems,can not only prioritize the most urgent threats based on the campaign stages of attack vectors(i.e.,IOCs)but also take appropriate mitigation measures based on contextual information of the alerts.However,the dramatic growth in the number of cybersecurity reports makes it nearly impossible for security professionals to find an efficient way to use these massive amounts of threat intelligence.In this paper,we propose a trigger-enhanced actionable CTI discovery system(TriCTI)to portray a relationship between IOCs and campaign stages and generate actionable CTI from cybersecurity reports through natural language processing(NLP)technology.Specifically,we introduce the“campaign trigger”for an effective explanation of the campaign stages to improve the performance of the classification model.The campaign trigger phrases are the keywords in the sentence that imply the campaign stage.The trained final trigger vectors have similar space representations with the keywords in the unseen sentence and will help correct classification by increasing the weight of the keywords.We also meticulously devise a data augmentation specifically for cybersecurity training sets to cope with the challenge of the scarcity of annotation data sets.Compared with state-of-the-art text classification models,such as BERT,the trigger-enhanced classification model has better performance with accuracy(86.99%)and F1 score(87.02%).We run TriCTI on more than 29k cybersecurity reports,from which we automatically and efficiently collect 113,543 actionable CTI.In particular,we verify the actionability of discovered CTI by using large-scale field data from VirusTotal(VT).The results demonstrate that the threat intelligence provided by VT lacks a part of the threat context for IOCs,such as the Actions on Objectives campaign stage.As a comparison,our proposed method can completely identify the actionable CTI in all campaign stages.Accordingly,cyber threats can be identified and resisted at any campaign stage with the discovered actionable CTI. 展开更多
关键词 Actionable cyber threat intelligence Campaign trigger Indicators of compromise(IOCs) Natural language processing(NLP)
原文传递
Graph-based visual analytics for cyber threat intelligence 被引量:2
8
作者 Fabian Bohm Florian Menges Gunther Pernul 《Cybersecurity》 2018年第1期279-297,共19页
The ever-increasing amount of major security incidents has led to an emerging interest in cooperative approaches to encounter cyber threats.To enable cooperation in detecting and preventing attacks it is an inevitable... The ever-increasing amount of major security incidents has led to an emerging interest in cooperative approaches to encounter cyber threats.To enable cooperation in detecting and preventing attacks it is an inevitable necessity to have structured and standardized formats to describe an incident.Corresponding formats are complex and of an extensive nature as they are often designed for automated processing and exchange.These characteristics hamper the readability and,therefore,prevent humans from understanding the documented incident.This is a major problem since the success and effectiveness of any security measure rely heavily on the contribution of security experts.To meet these shortcomings we propose a visual analytics concept enabling security experts to analyze and enrich semi-structured cyber threat intelligence information.Our approach combines an innovative way of persisting this data with an interactive visualization component to analyze and edit the threat information.We demonstrate the feasibility of our concept using the Structured Threat Information eXpression,the state-ofthe-art format for reporting cyber security issues. 展开更多
关键词 cyber threat intelligence Visual analytics Usable cybersecurity STIX
原文传递
Attack Behavior Extraction Based on Heterogeneous Cyberthreat Intelligence and Graph Convolutional Networks 被引量:1
9
作者 Binhui Tang Junfeng Wang +3 位作者 Huanran Qiu Jian Yu Zhongkun Yu Shijia Liu 《Computers, Materials & Continua》 SCIE EI 2023年第1期235-252,共18页
The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cy... The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cyber Threat Intelligence(CTI)can facilitate APT actors’profiling for an immediate response.However,it is difficult for traditional manual methods to analyze attack behaviors from cyber threat intelligence due to its heterogeneous nature.Based on the Adversarial Tactics,Techniques and Common Knowledge(ATT&CK)of threat behavior description,this paper proposes a threat behavioral knowledge extraction framework that integrates Heterogeneous Text Network(HTN)and Graph Convolutional Network(GCN)to solve this issue.It leverages the hierarchical correlation relationships of attack techniques and tactics in the ATT&CK to construct a text network of heterogeneous cyber threat intelligence.With the help of the Bidirectional EncoderRepresentation fromTransformers(BERT)pretraining model to analyze the contextual semantics of cyber threat intelligence,the task of threat behavior identification is transformed into a text classification task,which automatically extracts attack behavior in CTI,then identifies the malware and advanced threat actors.The experimental results show that F1 achieve 94.86%and 92.15%for the multi-label classification tasks of tactics and techniques.Extend the experiment to verify the method’s effectiveness in identifying the malware and threat actors in APT attacks.The F1 for malware and advanced threat actors identification task reached 98.45%and 99.48%,which are better than the benchmark model in the experiment and achieve state of the art.The model can effectivelymodel threat intelligence text data and acquire knowledge and experience migration by correlating implied features with a priori knowledge to compensate for insufficient sample data and improve the classification performance and recognition ability of threat behavior in text. 展开更多
关键词 Attack behavior extraction cyber threat intelligence(CTI) graph convolutional network(GCN) heterogeneous textual network(HTN)
下载PDF
A flexible approach for cyber threat hunting based on kernel audit records
10
作者 Fengyu Yang Yanni Han +2 位作者 Ying Ding Qian Tan Zhen Xu 《Cybersecurity》 EI CSCD 2022年第3期74-89,共16页
Hunting the advanced threats hidden in the enterprise networks has always been a complex and difficult task.Due to the variety of attacking means,it is difficult for traditional security systems to detect threats.Most... Hunting the advanced threats hidden in the enterprise networks has always been a complex and difficult task.Due to the variety of attacking means,it is difficult for traditional security systems to detect threats.Most existing methods analyze log records,but the amount of log records generated every day is very large.How to find the information related to the attack events quickly and effectively from massive data streams is an important problem.Considering that the knowledge graph can be used for automatic relation calculation and complex relation analysis,and can get relatively fast feedback,our work proposes to construct the knowledge graph based on kernel audit records,which fully considers the global correlation among entities observed in audit logs.We design the construction and application process of knowledge graph,which can be applied to actual threat hunting activities.Then we explore different ways to use the constructed knowledge graph for hunting actual threats in detail.Finally,we implement a LAN-wide hunting system which is convenient and flexible for security analysts.Evaluations based on the adversarial engagement designed by DARPA prove that our platform can effectively hunt sophisticated threats,quickly restore the attack path or assess the impact of attack. 展开更多
关键词 Advanced persistent threat cyber threat hunting Kernel audit log Knowledge graph
原文传递
The Role of AI in Cyber Security: Safeguarding Digital Identity
11
作者 Mohammad Binhammad Shaikha Alqaydi +1 位作者 Azzam Othman Laila Hatim Abuljadayel 《Journal of Information Security》 2024年第2期245-278,共34页
This article signals the use of Artificial Intelligence (AI) in information security where its merits, downsides as well as unanticipated negative outcomes are noted. It considers AI based models that can strengthen o... This article signals the use of Artificial Intelligence (AI) in information security where its merits, downsides as well as unanticipated negative outcomes are noted. It considers AI based models that can strengthen or undermine infrastructural functions and organize the networks. In addition, the essay delves into AI’s role in Cyber security software development and the need for AI-resilient strategies that could anticipate and thwart AI-created vulnerabilities. The document also touched on the socioeconomic ramifications of the emergence of AI in Cyber security as well. Looking into AI and security literature, the report outlines benefits including made threat detection precision, extended security ops efficiency, and preventive security tasks. At the same time, it emphasizes the positive side of AI, but it also shows potential limitations such as data bias, lack of interpretability, ethical concerns, and security flaws. The work similarly focuses on the characterized of misuse and sophisticated cyberattacks. The research suggests ways to diminish AI-generating maleficence which comprise ethical AI development, robust safety measures and constant audits and updates. With regard to the AI application in Cyber security, there are both pros and cons in terms of socio-economic issues, for example, job displacement, economic growth and the change in the required workforce skills. 展开更多
关键词 Artificial Intelligence cyber Attack cyber Security Real-Time Mitigation Social Media Security AI-Driven threat Intelligence
下载PDF
Characteristic Insights on Industrial Cyber Security and Popular Defense Mechanisms 被引量:4
12
作者 Ming Wan Jiawei Li +2 位作者 Ying Liu Jianming Zhao Jiushuang Wang 《China Communications》 SCIE CSCD 2021年第1期130-150,共21页
Due to the deep integration of information technology and operational technology,networked control systems are experiencing an increasing risk of international cyber attacks.In practice,industrial cyber security is a ... Due to the deep integration of information technology and operational technology,networked control systems are experiencing an increasing risk of international cyber attacks.In practice,industrial cyber security is a significant topic because current networked control systems are supporting various critical infrastructures to offer vital utility services.By comparing with traditional IT systems,this paper first analyzes the uncontrollable cyber threats and classified attack characteristics,and elaborates the intrinsic vulnerabilities in current networked control systems and novel security challenges in future Industrial Internet.After that,in order to overcome partial vulnerabilities,this paper presents a few representative security mechanisms which have been successfully applied in today’s industrial control systems,and these mechanisms originally improve traditional IT defense technologies from the perspective of industrial availability.Finally,several popular security viewpoints,adequately covering the needs of industrial network structures and service characteristics,are proposed to combine with burgeoning industrial information technologies.We target to provide some helpful security guidelines for both academia and industry,and hope that our insights can further promote in-depth development of industrial cyber security. 展开更多
关键词 industrial cyber threats industrial characteristics VULNERABILITIES security mechanisms and viewpoints
下载PDF
Classification of Cybersecurity Threats, Vulnerabilities and Countermeasures in Database Systems
13
作者 Mohammed Amin Almaiah Leen Mohammad Saqr +3 位作者 Leen Ahmad Al-Rawwash Layan Ahmed Altellawi Romel Al-Ali Omar Almomani 《Computers, Materials & Continua》 SCIE EI 2024年第11期3189-3220,共32页
Database systems have consistently been prime targets for cyber-attacks and threats due to the critical nature of the data they store.Despite the increasing reliance on database management systems,this field continues... Database systems have consistently been prime targets for cyber-attacks and threats due to the critical nature of the data they store.Despite the increasing reliance on database management systems,this field continues to face numerous cyber-attacks.Database management systems serve as the foundation of any information system or application.Any cyber-attack can result in significant damage to the database system and loss of sensitive data.Consequently,cyber risk classifications and assessments play a crucial role in risk management and establish an essential framework for identifying and responding to cyber threats.Risk assessment aids in understanding the impact of cyber threats and developing appropriate security controls to mitigate risks.The primary objective of this study is to conduct a comprehensive analysis of cyber risks in database management systems,including classifying threats,vulnerabilities,impacts,and countermeasures.This classification helps to identify suitable security controls to mitigate cyber risks for each type of threat.Additionally,this research aims to explore technical countermeasures to protect database systems from cyber threats.This study employs the content analysis method to collect,analyze,and classify data in terms of types of threats,vulnerabilities,and countermeasures.The results indicate that SQL injection attacks and Denial of Service(DoS)attacks were the most prevalent technical threats in database systems,each accounting for 9%of incidents.Vulnerable audit trails,intrusion attempts,and ransomware attacks were classified as the second level of technical threats in database systems,comprising 7%and 5%of incidents,respectively.Furthermore,the findings reveal that insider threats were the most common non-technical threats in database systems,accounting for 5%of incidents.Moreover,the results indicate that weak authentication,unpatched databases,weak audit trails,and multiple usage of an account were the most common technical vulnerabilities in database systems,each accounting for 9%of vulnerabilities.Additionally,software bugs,insecure coding practices,weak security controls,insecure networks,password misuse,weak encryption practices,and weak data masking were classified as the second level of security vulnerabilities in database systems,each accounting for 4%of vulnerabilities.The findings from this work can assist organizations in understanding the types of cyber threats and developing robust strategies against cyber-attacks. 展开更多
关键词 cyber threats database systems cyber risk assessment vulnerabilities countermeasures
下载PDF
Solar Power Plant Network Packet-Based Anomaly Detection System for Cybersecurity
14
作者 Ju Hyeon Lee Jiho Shin Jung Taek Seo 《Computers, Materials & Continua》 SCIE EI 2023年第10期757-779,共23页
As energy-related problems continue to emerge,the need for stable energy supplies and issues regarding both environmental and safety require urgent consideration.Renewable energy is becoming increasingly important,wit... As energy-related problems continue to emerge,the need for stable energy supplies and issues regarding both environmental and safety require urgent consideration.Renewable energy is becoming increasingly important,with solar power accounting for the most significant proportion of renewables.As the scale and importance of solar energy have increased,cyber threats against solar power plants have also increased.So,we need an anomaly detection system that effectively detects cyber threats to solar power plants.However,as mentioned earlier,the existing solar power plant anomaly detection system monitors only operating information such as power generation,making it difficult to detect cyberattacks.To address this issue,in this paper,we propose a network packet-based anomaly detection system for the Programmable Logic Controller(PLC)of the inverter,an essential system of photovoltaic plants,to detect cyber threats.Cyberattacks and vulnerabilities in solar power plants were analyzed to identify cyber threats in solar power plants.The analysis shows that Denial of Service(DoS)and Manin-the-Middle(MitM)attacks are primarily carried out on inverters,aiming to disrupt solar plant operations.To develop an anomaly detection system,we performed preprocessing,such as correlation analysis and normalization for PLC network packets data and trained various machine learning-based classification models on such data.The Random Forest model showed the best performance with an accuracy of 97.36%.The proposed system can detect anomalies based on network packets,identify potential cyber threats that cannot be identified by the anomaly detection system currently in use in solar power plants,and enhance the security of solar plants. 展开更多
关键词 Renewable energy solar power plant cyber threat cyberSECURITY anomaly detection machine learning network packet
下载PDF
Generic Attribute Scoring for Information Decay in Threat Information Sharing Platform
15
作者 Mohammed Alshehri 《Computers, Materials & Continua》 SCIE EI 2021年第4期917-931,共15页
Cyber Threat Intelligence(CTI)has gained massive attention to collect hidden knowledge for a better understanding of the various cyber-attacks and eventually paving the way for predicting the future of such attacks.Th... Cyber Threat Intelligence(CTI)has gained massive attention to collect hidden knowledge for a better understanding of the various cyber-attacks and eventually paving the way for predicting the future of such attacks.The information exchange and collaborative sharing through different platforms have a significant contribution towards a global solution.While CTI and the information exchange can help a lot in focusing and prioritizing on the use of the large volume of complex information among different organizations,there exists a great challenge ineffective processing of large count of different Indicators of Threat(IoT)which appear regularly,and that can be solved only through a collaborative approach.Collaborative approach and intelligence sharing have become the mandatory element in the entire world of processing the threats.In order to covet the complete needs of having a definite standard of information exchange,various initiatives have been taken in means of threat information sharing platforms like MISP and formats such as SITX.This paper proposes a scoring model to address information decay,which is shared within TISP.The scoring model is implemented,taking the use case of detecting the Threat Indicators in a phishing data network.The proposed method calculates the rate of decay of an attribute through which the early entries are removed. 展开更多
关键词 Information interchange cyber threat intelligence indicators of threats threat intelligence sharing platform
下载PDF
Cybersecurity and Cyber Forensics: Machine Learning Approach Systematic Review
16
作者 Ibrahim Goni Jerome MGumpy +1 位作者 Timothy UMaigari Murtala Mohammad 《Semiconductor Science and Information Devices》 2020年第2期25-29,共5页
The proliferation of cloud computing and internet of things has led to the connectivity of states and nations(developed and developing countries)worldwide in which global network provide platform for the connection.Di... The proliferation of cloud computing and internet of things has led to the connectivity of states and nations(developed and developing countries)worldwide in which global network provide platform for the connection.Digital forensics is a field of computer security that uses software applications and standard guidelines which support the extraction of evidences from any computer appliances which is perfectly enough for the court of law to use and make a judgment based on the comprehensiveness,authenticity and objectivity of the information obtained.Cybersecurity is of major concerned to the internet users worldwide due to the recent form of attacks,threat,viruses,intrusion among others going on every day among internet of things.However,it is noted that cybersecurity is based on confidentiality,integrity and validity of data.The aim of this work is make a systematic review on the application of machine learning algorithms to cybersecurity and cyber forensics and pave away for further research directions on the application of deep learning,computational intelligence,soft computing to cybersecurity and cyber forensics. 展开更多
关键词 cyberSECURITY cyber forensics cyber space cyber threat Machine learning and deep learning
下载PDF
Cybersecurity and Domestic Terrorism: Purpose and Future
17
作者 Robb Shawe Ian R. McAndrew 《Journal of Software Engineering and Applications》 2023年第10期548-560,共13页
The increasing utilization of digital technologies presents risks to critical systems due to exploitation by terrorists. Cybersecurity entails proactive and reactive measures designed to protect software and electroni... The increasing utilization of digital technologies presents risks to critical systems due to exploitation by terrorists. Cybersecurity entails proactive and reactive measures designed to protect software and electronic devices from any threats. However, the rising cases of cyber threats are carried out by domestic terrorists who share particular ideologies or grievances. This paper analyzes the increasing cyber-attack instances and mechanisms to counter these threats. Additionally, it addresses the growing concern of domestic terrorism and its impact on national security. Finally, it provides an overview of gaps and possible areas of future research to promote cybersecurity. 展开更多
关键词 cyber-Attacks cyberCRIME cyberSECURITY cyber threats Domestic Terrorism
下载PDF
基于Cyber Kill Chain的铁路信息网络安全防御研究 被引量:5
18
作者 杨钰杰 霍云龙 《铁路计算机应用》 2021年第11期64-67,共4页
为有效应对铁路企业面临的日益严峻的信息网络安全威胁,引入Cyber Kill Chain模型来识别和预防网络入侵活动,分析了该模型7个阶段相应的攻击行为特点,针对各阶段的预期目的,提出符合铁路行业特点的信息网络安全防御措施,以求在网络攻击... 为有效应对铁路企业面临的日益严峻的信息网络安全威胁,引入Cyber Kill Chain模型来识别和预防网络入侵活动,分析了该模型7个阶段相应的攻击行为特点,针对各阶段的预期目的,提出符合铁路行业特点的信息网络安全防御措施,以求在网络攻击较早阶段瓦解网络威胁,构建全方位、深层次的网络安全防御体系,保护铁路基础设施、应用系统、数据资源等免遭网络攻击破坏。 展开更多
关键词 网络安全 cyber Kill Chain 安全防御 威胁分析 安全检测
下载PDF
Development of the Software Application with Graphical User Interface for One Model Cyber Security
19
作者 Ramaz R. Shamugia 《International Journal of Communications, Network and System Sciences》 2019年第12期199-208,共10页
The article is dedicated to the development of software application with graphical user interface for analyzing of the operation of Integrated System of Data Defense from cyber-threats (ISDD) which includes subsystems... The article is dedicated to the development of software application with graphical user interface for analyzing of the operation of Integrated System of Data Defense from cyber-threats (ISDD) which includes subsystems of detection and elimination of vulnerabilities existing in the system, as well as Requests of Unauthorized Access (RUA). In the subsystems of eliminations of vulnerabilities and queues of unauthorized access considered as multichannel queueing systems with corresponding servers and queues, at random times there come requests to fix threats detected by the system. It is supposed that flows of requests demanding to eliminate threats coming to the mentioned subsystems of queueing systems are described with the Poisson distribution of probabilities, but processes of their elimination obey exponential law. For the system described above, there has been developed software realization of graphical interface which allows easily to change input parameters and observe graphical reflection of changes of the output indicators of the system. 展开更多
关键词 cyber SECURITY DATA SECURITY cyber threats cyber-Vulnerability Modelling of cyber-threats cyber Space DATA PROTECTION QUEUEING Systems
下载PDF
A Systematic Approach for Cyber Security in Vehicular Networks 被引量:1
20
作者 Farhan Ahmad Asma Adnane Virginia N. L. Franqueira 《Journal of Computer and Communications》 2016年第16期38-62,共26页
Vehicular Networks (VANET) are the largest real-life paradigm of ad hoc networks which aim to ensure road safety and enhance drivers’ comfort. In VANET, the vehicles communicate or collaborate with each other and wit... Vehicular Networks (VANET) are the largest real-life paradigm of ad hoc networks which aim to ensure road safety and enhance drivers’ comfort. In VANET, the vehicles communicate or collaborate with each other and with adjacent infrastructure by exchanging significant messages, such as road accident warnings, steep-curve ahead warnings or traffic jam warnings. However, this communication and other assets involved are subject to major threats and provide numerous opportunities for attackers to launch several attacks and compromise security and privacy of vehicular users. This paper reviews the cyber security in VANET and proposes an asset-based approach for VANET security. Firstly, it identifies relevant assets in VANET. Secondly, it provides a detailed taxonomy of vulnerabilities and threats on these assets, and, lastly, it classifies the possible attacks in VANET and critically evaluates them. 展开更多
关键词 Vehicular Networks Ad Hoc Networks cyber Security PRIVACY VULNERABILITIES threats ASSETS Smart City
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部