Objective:The tyrosine phosphatase SHP2 has a dual role in cancer initiation and progression in a tissue type-dependent manner.Several studies have linked SHP2 to the aggressive behavior of breast cancer cells and poo...Objective:The tyrosine phosphatase SHP2 has a dual role in cancer initiation and progression in a tissue type-dependent manner.Several studies have linked SHP2 to the aggressive behavior of breast cancer cells and poorer outcomes in people with cancer.Nevertheless,the mechanistic details of how SHP2 promotes breast cancer progression remain largely undefined.Methods:The relationship between SHP2 expression and the prognosis of patients with breast cancer was investigated by using the TCGA and GEO databases.The expression of SHP2 in breast cancer tissues was analyzed by immunohistochemistry.CRISPR/Cas9 technology was used to generate SHP2-knockout breast cancer cells.Cell-counting kit-8,colony formation,cell cycle,and EdU incorporation assays,as well as a tumor xenograft model were used to examine the function of SHP2 in breast cancer proliferation.Quantitative RT-PCR,western blotting,immunofluorescence staining,and ubiquitination assays were used to explore the molecular mechanism through which SHP2 regulates breast cancer proliferation.Results:High SHP2 expression is correlated with poor prognosis in patients with breast cancer.SHP2 is required for the proliferation of breast cancer cellsin vitro and tumor growthin vivo through regulation of Cyclin D1 abundance,thereby accelerating cell cycle progression.Notably,SHP2 modulates the ubiquitin–proteasome-dependent degradation of Cyclin D1viathe PI3K/AKT/GSK3βsignaling pathway.SHP2 knockout attenuates the activation of PI3K/AKT signaling and causes the dephosphorylation and resultant activation of GSK3β.GSK3βthen mediates phosphorylation of Cyclin D1 at threonine 286,thereby promoting the translocation of Cyclin D1 from the nucleus to the cytoplasm and facilitating Cyclin D1 degradation through the ubiquitin–proteasome system.Conclusions:Our study uncovered the mechanism through which SHP2 regulates breast cancer proliferation.SHP2 may therefore potentially serve as a therapeutic target for breast cancer.展开更多
Objective:Tumor-associated macrophages(TAMs)of the M2 phenotype are frequently associated with cancer progression.Invasive cancer cells undergoing epithelial-mesenchymal transition(EMT)have a selective advantage as TA...Objective:Tumor-associated macrophages(TAMs)of the M2 phenotype are frequently associated with cancer progression.Invasive cancer cells undergoing epithelial-mesenchymal transition(EMT)have a selective advantage as TAM activators.Cyclin D1b is a highly oncogenic splice variant of cyclin D1.We previously reported that cyclin D1b enhances the invasiveness of breast cancer cells by inducing EMT.However,the role of cyclin D1b in inducing macrophage differentiation toward tumor-associated macrophage-like cells remains unknown.This study aimed to explore the relationship between breast cancer cells overexpressing cyclin Dlb and TAMs.Methods:Mouse breast cancer 4T1 cells were transfected with cyclin D1b variant and co-cultured with macrophage cells in a Transwell coculture system.The expression of characteristic cytokines in differentiated macrophages was detected using qRT-PCR,ELISA and zymography assay.Tumor-associated macrophage distribution in a transplanted tumor was detected by immunofluorescence staining.The proliferation and migration ability of breast cancer cells was detected using the cell counting kit-8(CCK-8)assay,wound healing assay,Transwell invasion assay,and lung metastasis assay.Expression levels of mRNAs were detected by qRT-PCR.Protein expression levels were detected by Western blotting.The integrated analyses of The Cancer Genome Atlas(TCGA)datasets and bioinformatics methods were adopted to discover gene expression,gene coexpression,and overall survival in patients with breast cancer.Results:After co-culture with breast cancer cells overexpressing cyclin D1b,RAW264.7 macrophages were differentiated into an M2 phenotype.Moreover,differentiated M2-like macrophages promoted the proliferation and migration of breast cancer cells in turn.Notably,these macrophages facilitated the migration of breast cancer cells in vivo.Further investigations indicated that differentiated M2-like macrophages induced EMT of breast cancer cells accompanied with upregulation of TGF-β1 and integrinβ3 expression.Conclusion:Breast cancer cells transfected with cyclin D1b can induce the differentiation of macrophages into a tumor-associated macrophage-like phenotype,which promotes tumor metastasis in vitro and in vivo.展开更多
To investigate the effects of estrogen(E 2) on telomerase activity and its mechanism in human breast cancer cells, estrogen receptor positive MCF-7 cells were treated with different concentrations of E 2 Telomeras...To investigate the effects of estrogen(E 2) on telomerase activity and its mechanism in human breast cancer cells, estrogen receptor positive MCF-7 cells were treated with different concentrations of E 2 Telomerase activity was measured by using TRAP-ELISA method, the cell cycle phases analyzed by using flow cytometry, and the expression of Cyclin D 1 detected by using immunohistochemistry method The results showed that telomerase activity levels were increased in MCF-7 cells treated with 10 -8 mol/L E 2 during the observed period ( P <0 05), and E 2 increased telomerase activity levels in a dose-dependent manner(10 -10 -10 -8 mol/L); Simultaneously, the cell cycle phases of MCF-7 cells treated with 10 -8 mol/L E 2 were changed significantly: G 0/G 1 phase decreased from 60 52% to 50 93%, S phase increased from 29 03% to 30 83%; However, the expression of Cyclin D 1 was decreased It was concluded that estrogen can upregulate telomerase activity of MCF-7 cells, and the effect can be blocked by antiestrogen tamoxifen Its mechanism may be closely associated with modulation of cell cycle phases展开更多
Objective Benzoquinone ansamycin antibiotic, geldanamycin (GA), is a new anticancer agent that could inhibit Hsp90 by occupying its NH2-terminal ATP-binding site. This study was to investigate the antitumor efficacy o...Objective Benzoquinone ansamycin antibiotic, geldanamycin (GA), is a new anticancer agent that could inhibit Hsp90 by occupying its NH2-terminal ATP-binding site. This study was to investigate the antitumor efficacy of GA on Her2/neu tyrosine kinase overexpressing human breast cancer cell line SKBr3. Methods The degradation of Her2/neu tyrosine kinase was analyzed by Western blotting, the proliferation index was determined by MTT assay, cell cycle distribution was detected by flow cytometry, Cyclin D1 mRNA transcription was measured by RT-PCR and real-time PCR, and cell motility was evaluated by the cell culture insert model. Results GA induced a dose-and a time-dependent degradation of the Her2/neu tyrosine kinase protein and concurrently, the inhibition of cancer cell proliferation. The antitumor effects mediated by GA included: GA treatment decreased the survival rates of cancer cells, and led to a dose-dependent G1 arrest. Furthermore, this antitumor effect was proved to be related to declined transcription of Cyclin D1. Concurrently, the motility of cancer cells was reduced by GA. Conclusion GA treatment could induce the degradation of Her2/neu tyrosine kinase efficiently, inhibit cancer cell proliferation and reduce motility in Her2/neu tyrosine kinase overexpressed human breast cancer cell line SKBr3.展开更多
基金This work was supported by grants from the National Natural S&ence Foundation of China(grant Nos.81372844,81472474,81772804 and 81903092)Tianjin Municipal Science and Technology Commission(grant No.16JCYBJC25400)+1 种基金Changjiang Researchers and Innovative Research Team(grant No.IRT_14R40)Postgraduate Innovation Fund of"13th Five-Year Comprehensive Investment,"Tianjin Medical University(grant No.YJSCX201716).
文摘Objective:The tyrosine phosphatase SHP2 has a dual role in cancer initiation and progression in a tissue type-dependent manner.Several studies have linked SHP2 to the aggressive behavior of breast cancer cells and poorer outcomes in people with cancer.Nevertheless,the mechanistic details of how SHP2 promotes breast cancer progression remain largely undefined.Methods:The relationship between SHP2 expression and the prognosis of patients with breast cancer was investigated by using the TCGA and GEO databases.The expression of SHP2 in breast cancer tissues was analyzed by immunohistochemistry.CRISPR/Cas9 technology was used to generate SHP2-knockout breast cancer cells.Cell-counting kit-8,colony formation,cell cycle,and EdU incorporation assays,as well as a tumor xenograft model were used to examine the function of SHP2 in breast cancer proliferation.Quantitative RT-PCR,western blotting,immunofluorescence staining,and ubiquitination assays were used to explore the molecular mechanism through which SHP2 regulates breast cancer proliferation.Results:High SHP2 expression is correlated with poor prognosis in patients with breast cancer.SHP2 is required for the proliferation of breast cancer cellsin vitro and tumor growthin vivo through regulation of Cyclin D1 abundance,thereby accelerating cell cycle progression.Notably,SHP2 modulates the ubiquitin–proteasome-dependent degradation of Cyclin D1viathe PI3K/AKT/GSK3βsignaling pathway.SHP2 knockout attenuates the activation of PI3K/AKT signaling and causes the dephosphorylation and resultant activation of GSK3β.GSK3βthen mediates phosphorylation of Cyclin D1 at threonine 286,thereby promoting the translocation of Cyclin D1 from the nucleus to the cytoplasm and facilitating Cyclin D1 degradation through the ubiquitin–proteasome system.Conclusions:Our study uncovered the mechanism through which SHP2 regulates breast cancer proliferation.SHP2 may therefore potentially serve as a therapeutic target for breast cancer.
基金supported by the National Natural Science Foundation of China(No.81702920,No.82174020).
文摘Objective:Tumor-associated macrophages(TAMs)of the M2 phenotype are frequently associated with cancer progression.Invasive cancer cells undergoing epithelial-mesenchymal transition(EMT)have a selective advantage as TAM activators.Cyclin D1b is a highly oncogenic splice variant of cyclin D1.We previously reported that cyclin D1b enhances the invasiveness of breast cancer cells by inducing EMT.However,the role of cyclin D1b in inducing macrophage differentiation toward tumor-associated macrophage-like cells remains unknown.This study aimed to explore the relationship between breast cancer cells overexpressing cyclin Dlb and TAMs.Methods:Mouse breast cancer 4T1 cells were transfected with cyclin D1b variant and co-cultured with macrophage cells in a Transwell coculture system.The expression of characteristic cytokines in differentiated macrophages was detected using qRT-PCR,ELISA and zymography assay.Tumor-associated macrophage distribution in a transplanted tumor was detected by immunofluorescence staining.The proliferation and migration ability of breast cancer cells was detected using the cell counting kit-8(CCK-8)assay,wound healing assay,Transwell invasion assay,and lung metastasis assay.Expression levels of mRNAs were detected by qRT-PCR.Protein expression levels were detected by Western blotting.The integrated analyses of The Cancer Genome Atlas(TCGA)datasets and bioinformatics methods were adopted to discover gene expression,gene coexpression,and overall survival in patients with breast cancer.Results:After co-culture with breast cancer cells overexpressing cyclin D1b,RAW264.7 macrophages were differentiated into an M2 phenotype.Moreover,differentiated M2-like macrophages promoted the proliferation and migration of breast cancer cells in turn.Notably,these macrophages facilitated the migration of breast cancer cells in vivo.Further investigations indicated that differentiated M2-like macrophages induced EMT of breast cancer cells accompanied with upregulation of TGF-β1 and integrinβ3 expression.Conclusion:Breast cancer cells transfected with cyclin D1b can induce the differentiation of macrophages into a tumor-associated macrophage-like phenotype,which promotes tumor metastasis in vitro and in vivo.
文摘To investigate the effects of estrogen(E 2) on telomerase activity and its mechanism in human breast cancer cells, estrogen receptor positive MCF-7 cells were treated with different concentrations of E 2 Telomerase activity was measured by using TRAP-ELISA method, the cell cycle phases analyzed by using flow cytometry, and the expression of Cyclin D 1 detected by using immunohistochemistry method The results showed that telomerase activity levels were increased in MCF-7 cells treated with 10 -8 mol/L E 2 during the observed period ( P <0 05), and E 2 increased telomerase activity levels in a dose-dependent manner(10 -10 -10 -8 mol/L); Simultaneously, the cell cycle phases of MCF-7 cells treated with 10 -8 mol/L E 2 were changed significantly: G 0/G 1 phase decreased from 60 52% to 50 93%, S phase increased from 29 03% to 30 83%; However, the expression of Cyclin D 1 was decreased It was concluded that estrogen can upregulate telomerase activity of MCF-7 cells, and the effect can be blocked by antiestrogen tamoxifen Its mechanism may be closely associated with modulation of cell cycle phases
基金supported by Foundation of Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University) Ministry of Education (No.KFJJ-2005-05)
文摘Objective Benzoquinone ansamycin antibiotic, geldanamycin (GA), is a new anticancer agent that could inhibit Hsp90 by occupying its NH2-terminal ATP-binding site. This study was to investigate the antitumor efficacy of GA on Her2/neu tyrosine kinase overexpressing human breast cancer cell line SKBr3. Methods The degradation of Her2/neu tyrosine kinase was analyzed by Western blotting, the proliferation index was determined by MTT assay, cell cycle distribution was detected by flow cytometry, Cyclin D1 mRNA transcription was measured by RT-PCR and real-time PCR, and cell motility was evaluated by the cell culture insert model. Results GA induced a dose-and a time-dependent degradation of the Her2/neu tyrosine kinase protein and concurrently, the inhibition of cancer cell proliferation. The antitumor effects mediated by GA included: GA treatment decreased the survival rates of cancer cells, and led to a dose-dependent G1 arrest. Furthermore, this antitumor effect was proved to be related to declined transcription of Cyclin D1. Concurrently, the motility of cancer cells was reduced by GA. Conclusion GA treatment could induce the degradation of Her2/neu tyrosine kinase efficiently, inhibit cancer cell proliferation and reduce motility in Her2/neu tyrosine kinase overexpressed human breast cancer cell line SKBr3.