期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Identification of Novel CDK9 Inhibitors with Better Inhibitory Activity and Higher Selectivity for Cancer Treatment by an Effective Two-Stage Virtual Screening Strategy
1
作者 Szu-Hung Chen Yu-Ru Wang +2 位作者 Yih Ho Shu-Juan Lin Hsuan-Liang Liu 《Journal of Biomedical Science and Engineering》 2021年第12期371-390,共20页
The aberrant overexpression of cyclin-dependent kinase 9 (CDK9) in cancer cells results in the loss of proliferative control, making it an attractive therapeutic target for various cancers. However, the highly structu... The aberrant overexpression of cyclin-dependent kinase 9 (CDK9) in cancer cells results in the loss of proliferative control, making it an attractive therapeutic target for various cancers. However, the highly structural similarity between CDK9 and CDK2 makes the development of novel selective CDK9 inhibitors a challenging task and thus limits their clinical applications. Here, an effective two-stage virtual screening strategy was developed to identify novel CDK9 inhibitors with better inhibitory activity and higher selectivity. The first screening stage aims to select potential compounds with better inhibitory activity than Roniciclib, one of the most effective CDK9 inhibitors, through reliable structure-based pharmacophoric virtual screening and accurate molecular docking analyses. The second stage employs a very detailed visual inspection process, in which several structural criteria describing the major difference between the binding pockets of CDK9 and CDK2 are taken into consideration, to identify compounds with higher selectivity than CAN508, one of the CDK9 inhibitors with distinguished selectivity. Finally, three compounds (NCI207113 from NCI database and TCM0004 and TCM3282 from TCM database) with better inhibitory activity and higher selectivity were successfully identified as novel CDK9 inhibitors. These three compounds also display excellent binding stabilities, great pharmacokinetic properties and low toxicity in MD simulations and ADMET predictions. Besides, the results of binding free energy calculations suggest that enhancing van der Waals interaction and nonpolar solvation energy and/or reducing polar solvation energy can significantly improve the binding affinity of these CDK9 inhibitors. Their clinical potentials to serve as anticancer drug candidates can be further evaluated through a series of <em>in vitro/in vivo</em> bioassays in the future. To the best of our knowledge, this is the first attempt to identify novel CDK9 inhibitors with both better inhibitory activity and higher selectivity through an effective two-stage virtual screening strategy. 展开更多
关键词 cyclin-dependent kinase 9 (cdk9) Structure Based Pharmacophore Modeling Virtual Screening
下载PDF
Human cytomegalovirus RNA2.7 inhibits RNA polymeraseⅡ(PolⅡ)Serine-2 phosphorylation by reducing the interaction between PolⅡand phosphorylated cyclin-dependent kinase 9(pCDK9)
2
作者 Yujing Huang Xin Guo +7 位作者 Jing Zhang Jianming Li Mingyi Xu Qing Wang Zhongyang Liu Yanping Ma Ying Qi Qiang Ruan 《Virologica Sinica》 SCIE CAS CSCD 2022年第3期358-369,共12页
Human cytomegalovirus(HCMV)is a ubiquitous pathogen belongs to betaherpesvirus subfamily.RNA2.7 is a highly conserved long non-coding RNA accounting for more than 20%of total viral transcripts.In our study,functions o... Human cytomegalovirus(HCMV)is a ubiquitous pathogen belongs to betaherpesvirus subfamily.RNA2.7 is a highly conserved long non-coding RNA accounting for more than 20%of total viral transcripts.In our study,functions of HCMV RNA2.7 were investigated by comparison of host cellular transcriptomes between cells infected with HCMV clinical strain and RNA2.7 deleted mutant.It was demonstrated that RNA polymeraseⅡ(PolⅡ)-dependent host gene transcriptions were significantly activated when RNA2.7 was removed during infection.A145 nt-in-length motif within RNA2.7 was identified to inhibit the phosphorylation of PolⅡSerine-2(PolⅡS2)by reducing the interaction between PolⅡand phosphorylated cyclin-dependent kinase 9(pCDK9).Due to the loss of PolⅡS2 phosphorylation,cellular DNA pre-replication complex(pre-RC)factors,including Cdt1 and Cdc6,were significantly decreased,which prevented more cells from entering into S phase and facilitated viral DNA replication.Our results provide new insights of HCMV RNA2.7 functions in regulation of host cellular transcription. 展开更多
关键词 Human cytomegalovirus(HCMV) RNA2.7 RNA polymeraseⅡ(PolⅡ) cyclin-dependent kinase 9(cdk9) PHOSPHORYLATION
原文传递
Cdk5 knocking out mediated by CRISPR-Cas9 genome editing for PD-L1 attenuation and enhanced antitumor immunity 被引量:5
3
作者 Huan Deng Songwei Tan +7 位作者 Xueqin Gao Chenming Zou Chenfeng Xu Kun Tu Qingle Song Fengjuan Fan Wei Huang Zhiping Zhang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2020年第2期358-373,共16页
Blocking the programmed death-ligand 1(PD-L1)on tumor cells with monoclonal antibody therapy has emerged as powerful weapon in cancer immunotherapy.However,only a minority of patients presented immune responses in cli... Blocking the programmed death-ligand 1(PD-L1)on tumor cells with monoclonal antibody therapy has emerged as powerful weapon in cancer immunotherapy.However,only a minority of patients presented immune responses in clinical trials.To develop an alternative treatment method based on immune checkpoint blockade,we designed a novel and efficient CRISPR-Cas9 genome editing system delivered by cationic copolymer aPBAE to downregulate PD-L1 expression on tumor cells via specifically knocking out Cyclin-dependent kinase 5(Cdk5)gene in vivo.The expression of PD-L1 on tumor cells was significantly attenuated by knocking out Cdk5,leading to effective tumor growth inhibition in murine melanoma and lung metastasis suppression in triple-negative breast cancer.Importantly,we demonstrated that aPBAE/Cas9-Cdk5 treatment elicited strong T cell-mediated immune responses in tumor microenvironment that the population of CD8^+T cells was significantly increased while regulatory T cells(Tregs)was decreased.It may be the first case to exhibit direct in vivo PD-L1 downregulation via CRISPR-Cas9 genome editing technology for cancer therapy.It will provide promising strategy for preclinical antitumor treatment through the combination of nanotechnology and genome engineering. 展开更多
关键词 CRISPR-Cas9 GENOME EDITING system cyclin-dependent kinase 5(cdk5) Programmed death-ligand 1(PD-L1) ANTITUMOR immunity Nanoparticles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部